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Abstract

Let Bk be the bipartite graph defined by the subsets of {1, . . . , 2k + 1}
of size k and k + 1. We prove that the prism over Bk is hamiltonian. We
also show that Bk has a closed spanning 2-trail.

1 Introduction

Let [2k + 1] be the set {1, . . . , 2k + 1}. Consider the bipartite graph Bk whose
vertices are all subsets of [2k + 1] of size k or k + 1, and whose edges represent
the inclusion between two such subsets. The notorious Middle two levels problem
is whether Bk is hamiltonian for all k. Most likely it was first asked by Havel [5]
(see the account in [8]).

Many authors attempted to solve this problem. One approach was to prove the
assertion for specific values of k. The best result in this direction was obtained
by Shields and Savage [10] who proved that Bk is hamiltonian for 1 ≤ k ≤
15. Another approach aimed at identifying long cycles in Bk. In [10], it was
proved that Bk has a cycle of length ≥ 0.86 |Bk|, where |Bk| = 2

(
2k+1
k

)
is the

number of vertices of Bk. The best lower bound is due to R. Johnson who
proved [11] that there is a cycle of length (1 − o(1)) |Bk|. Yet another direction
was to find other structures that hopefully would be useful for finding the elusive
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hamiltonian cycle in Bk. For instance, since a hamiltonian cycle in Bk is a disjoint
union of two 1-factors, one may hope to find a hamiltonian cycle by building a
sufficiently large repertoire of 1-factors. Duffus et al. [3] proved that no two 1-
factors in the orbit of the lexicographic 1-factor form a hamiltonian cycle. This
motivated Kierstead and Trotter [8] to generalize the concept of lexicographic 1-
factor to lexical factorizations. Still no hamiltonian cycle was discovered. Another
paper, [2], introduced the modular matchings.

In this paper, we use modular matchings to prove that Bk is close to being
hamiltonian. The word ‘close’ can be interpreted in several ways. For instance,
one can view a hamiltonian cycle as a spanning closed walk that visits each
vertex exactly once. One can also view a hamiltonian path as a spanning tree of
maximum degree 2. It is then quite natural to explore the following modifications.
Instead of searching for a hamiltonian cycle in a graph, search for a spanning,
closed walk in which every vertex is visited at most twice (or, in general, k times).
Similarly, instead of searching for a hamiltonian path, one can look for a spanning
tree of maximum degree 3 (or k). In accordance with the terminology of [6], we
call these spanning structures k-walks and k-trees, respectively.

It was shown in [6] that any graph with a k-tree has a k-walk, and that the
existence of a k-walk guarantees the existence of a (k + 1)-tree, for any k. This
results in the following hierarchy among families of graphs:

1-walk (hamiltonian cycle) =⇒ 2-tree (hamiltonian path)

=⇒ 2-walk =⇒ 3-tree =⇒ . . .

Clearly, for every connected graph G, there is a k for which G has a k-walk (just
duplicate all edges to obtain an eulerian graph whose Euler trail visits every vertex
at most ∆(G) times). Graphs with a k-walk for a smaller k can be regarded as
closer to being hamiltonian. For a nice survey of results on k-walks, k-trees and
related topics, we refer the reader to Ellingham [4].

The prism over a graph G is the Cartesian product G2K2 of G with the
complete graph K2 [1, 7, 9]. Thus, it consists of two copies of G and a 1-factor
joining the corresponding vertices. It was observed in [7] that the property of
having a hamiltonian prism is ‘sandwiched’ between the existence of a 2-tree and
the existence of a 2-walk. That is:

2-tree =⇒ hamiltonian prism =⇒ 2-walk

and both implications are sharp. This can be naturally interpreted as saying
that graphs with a hamiltonian prism are closer to being hamiltonian than those
which only have a 2-walk.

A hamiltonian cycle in a graph is a spanning 2-regular subgraph. In this note,
we use the modular factorization to prove that Bk has a spanning 3-connected
cubic subgraph. A direct consequence of this is that Bk has a hamiltonian prism
and also a 2-trail (a 2-walk in which each edge is used at most once). As an aside,
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we note that in case Bk fails to be hamiltonian, these cubic subgraphs yield a
family of cubic, 3-connected bipartite non-hamiltonian graphs.

2 Modular matchings

Our main tool is the concept of a modular matching in Bk, as defined in [2]. We
recall the related definitions, generally trying to keep in line with the notation
of [2]. The weight

∑
B of a set B ⊂ [2k + 1] is defined to be the sum of all

elements of B. The complement of B is denoted by B.
Let A ⊂ [2k + 1] be a k-set (set of size k). For an integer i = 1, . . . , k + 1,

let mi(A) be the set obtained when one adds the j-th largest element of A to A,
where

j ≡ i+
∑

A (mod k + 1)

and 1 ≤ j ≤ k+ 1. Let mi be the set of edges of Bk of the form {A,mi(A)}. For
easier work with expressions such as mi+1, we set mk+2 = m1 and mk+3 = m2.

Theorem 1 ([2]) For i = 1, . . . , k + 1, mi is a matching in Bk and the set
{m1, . . . ,mk+1} is a 1-factorization of Bk. 2

An important observation, which is implicit in the proof of [2, Theorem 1], is
the following:

Lemma 2 Define a mapping bi : Bk+1 → Bk by setting bi(B) to be the set
obtained by removing the j-th smallest element from B, where

j ≡ i+
∑

B (mod k + 1)

and the index is based at 1. The composition bi ◦mi is the identity. 2

It will be convenient to view the set [2k + 1] as ordered cyclically, with 1 being
the successor of 2k+ 1. A segment in a set B ⊂ [2k + 1] is a maximal contiguous
sequence of elements of B. Since the elements 1 and 2k + 1 are considered to be
adjacent, a segment may ‘wrap around’.

3 A connected spanning subgraph of Bk

In this section, we show that three suitably selected modular matchings in Bk

form a connected spanning cubic subgraph of Bk. To this end, we introduce the
following notation. Throughout this section, let A be a k-subset of [2k + 1]. The
elements of A can be labeled by numbers +1, . . . ,+(k + 1) such that adding the
element with label +i to A, one obtains the set B such that {A,B} ∈ mi (thus,
B = mi(A)). We shall use A(+i) to denote the element of [2k + 1] labeled +i.
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By Lemma 2, the elements A(+1), . . . , A(+(k + 1)) form a decreasing sequence
(except for at most one increase caused by the wrap-around at 1).

Symmetrically, if B is a (k+ 1)-subset of [2k + 1], then the elements of B can
be labeled by −1, . . . ,−(k + 1) in such a way that removing the element labeled
−i from B (we shall write B(−i) for the element), one obtains the set bi(B).
Again by Lemma 2, the sequence B(−1), . . . , B(−(k + 1)) is increasing (with a
possible wrap-around at 2k + 1).

We need to be able to describe a sequence of additions and removals of el-
ements of the above type. First, let i, j ∈ [k + 1]. We write A+i for the set
obtained by adding A(+i) to A (i.e., the set mi(A)). The symbol A+i,−j denotes
the outcome of the removal of A+i(−j) from A+i. The definition is extended to
sequences like A+i1,−i2,...,±ir (in which the signs must alternate) in a natural way.
Expressions like B−i1,+i2,...,±is , where B is a (k+1)-set, are defined symmetrically.

To help the reader, we introduce a graphical notation for the above operations,
used in Figure 1. A sequence of additions and deletions is represented using a
rectangular grid, each of whose rows corresponds to a set involved in the sequence.
For brevity, we identify the rows with such sets. Columns correspond to (and are
identified with) elements of [2k + 1]. A square in row S and column x is marked
gray iff x ∈ S. A label like +i in row S denotes the element S(+i). Labels on
the left and on the top of a diagram mark special sets and elements. Finally, a
square marked in bold represents the element whose addition/removal leads to
the next set in the sequence. Observe that this is always a square with a label
(+i or −i).
Lemma 3 For any k-set A 6= {1, . . . , k} and i ∈ {1, . . . , k + 1}, the spanning
subgraph of Bk formed by the edges in mi ∪mi+1 ∪mi+2 contains a path P that
starts in A and ends in a k-set of smaller weight.

Proof. To keep the notation simple, we prove the assertion for i = 1 (the proof
in the general case is a trivial modification). Assume first that some element of
A is larger than a = A(+2) (see Figure 1a), and set C = A+2,−3. Since

C(−3) = A+2(−3) > A+2(−2) = a,

the weight of C is less than that of A. Thus, the path that starts at A and follows
first the edge of m2 and then the edge of m3 has the required property.

We may therefore assume that a is the largest element of A+2 (as in Figures 1b
and c). Let s and z be the first and the last element of the last segment σ of
A preceding a, respectively. Clearly, s < a (although our definition allows a
segment to wrap around). Furthermore, s > 1 since A 6= {1, . . . , k}.

Note that A+2(−1) = z. Set D = A+2,−1, observing that D(+2) = s − 1.
Furthermore, set E = D+2,−3 = A+2,−1,+2,−3.

To interpret E, we distinguish two cases based on the length of σ. If σ has
length 1 (i.e., s + 1 /∈ A, see Figure 1b), then D+2(−3) = a. Consequently, E
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Figure 1: An illustration to the proof of Lemma 3.

differs from A in that it has s− 1 in place of s. We infer that
∑
E <

∑
A. The

desired path follows the matchings in the order m2,m1,m2,m3 starting from A.
It remains to consider the case that the length of σ is more than 1 (Figure 1c).

The element D+2(−3) is now s, so E = A ∪ {a} \ {s}. Since E+2 = z, one has
E+2(−3) = a. Setting F = E+2,−3, one has F = A ∪ {s− 1} \ {s}, and hence∑
F <

∑
A. Recalling that F = A+2,−1,+2,−3,+2,−3, one sees that a path from A

to F uses edges of m2,m1,m2,m3,m2 and m3 in order. The proof is finished. 2

Theorem 4 For i ∈ {1, . . . , k + 1}, the union Mi of the matchings mi, mi+1

and mi+2 is a connected spanning cubic subgraph of Bk.

Proof. Lemma 3 implies that every vertex different from A0 = {1, . . . , k} is
joined to A0 by a path in Mi. Therefore, Mi is connected. It is cubic since
mi,mi+1,mi+2 are pairwise disjoint by Theorem 1. 2

4 The subgraph Mi is 3-connected

We now strengthen the result of Section 3 by showing that the spanning cubic
subgraph Mi of Bk is actually 3-connected. When working with elements of
[2k + 1], we perform all our computations modulo 2k + 1, using 2k + 1 in place
of 0. Thus, for instance, (2k + 1) + 1 is 1.

Let A ⊂ [2k + 1]. The shift sh(A) of A is the set

sh(A) = {x+ 1 : x ∈ A} .
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Thus, as we consider the elements 1 and 2k+ 1 to be adjacent, the shift of A
is obtained from A by a translation by one to the right. Set sh0(A) = A and, for
n > 0, shn(A) = sh(shn−1(A)). Clearly, sh2k+1(A) = A.

The following lemma is implicit in [2]. For convenience, we include a short
proof based on an idea suggested by a referee.

Lemma 5 Let A be a subset of [2k + 1] with |A| ∈ {k, k + 1}. Then shn(A) 6= A
for all n = 1, ..., 2k.

Proof. The proof relies on the fact that shifting changes the weight by |A|
modulo 2k + 1; in symbols,

∑
sh(A) ≡ (

∑
A) + |A| (mod 2k + 1).

Let n ≤ 2k + 1 be the smallest positive integer such that shn(A) = A. By the
above, n · |A| is divisible by 2k + 1. Since |A| and 2k + 1 are relatively prime, n
is divisible by 2k + 1, whence n = 2k + 1. 2

We shall make use of a result that appears as Theorem 3 in [2]:

Lemma 6 For any i ∈ {1, . . . , k + 1}, if {A,B} ∈mi, then {sh(A), sh(B)} ∈mi

as well. 2

The edges of mi ∪mj, 1 ≤ i 6= j ≤ k + 1, form a 2-factor of Bk. We now
describe some properties of the cycles of the 2-factors mi ∪mi+1:

Lemma 7 Let C be a cycle in the 2-factor mi ∪mi+1, where i ∈ {1, . . . , k + 1}.
Let A ⊂ [2k + 1] be a set on C.

(i) For all t, sht(A) is on C.

(ii) If A has t segments, then the length of C is 2(2k+1)(t+δ), where δ ∈ {0, 1}.
In particular, if a set B is also on C, then the numbers of segments of A
and B differ by at most 1.

(iii) The sets A, sh(A), . . . , sh2k(A) are uniformly distributed on C, i.e.,

dC(A, sh(A)) = dC(sht(A), sht+1(A)),

where t ∈ {1, . . . , 2k} and dC denotes the distance on C.

(iv) If a set B ⊂ [2k + 1] is on the cycle C and {A,B} ∈ E(Bk), then either
dC(A,B) = 1 or dC(A,B) > dC(A, sh(A)).
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Proof. (i) A segment of a set A will be denoted by [a, b], where a and b are
the smallest and the largest numbers in the segment, respectively. Let A be a
k-set and [aj, bj], j = 1, . . . , n, be its segments. We label the segments in such
a way that [a1, b1] is the first segment to the right of A(+i), and the segment
[aj, bj] is the first segment to the right of the segment [aj−1, bj−1], with a possible
wrap-around. It is easy to see that the path P through the vertices given below
is a part of the cycle C (see Figure 2 for an illustration).

A = {[a1, b1] , [a2, b2] , . . . , [an−1, bn−1] , [an, bn]} ,
{A(+i), [a1, b1] , [a2, b2] , . . . , [an−1, bn−1] , [an, bn]} ,
{A(+i), [a1 + 1, b1] , [a2, b2] , . . . , [an−1, bn−1] , [an, bn]} ,
{A(+i), [a1 + 1, b1 + 1] , [a2, b2] , . . . , [an−1, bn−1] , [an, bn]} ,
{A(+i), [a1 + 1, b1 + 1] , [a2 + 1, b2] , . . . , [an−1, bn−1] , [an, bn]} ,
{A(+i), [a1 + 1, b1 + 1] , [a2 + 1, b2 + 1] , . . . , [an−1, bn−1] , [an, bn]} ,

...

{A(+i), [a1 + 1, b1 + 1] , [a2 + 1, b2 + 1] , . . . , [an−1 + 1, bn−1 + 1] , [an, bn]} ,
{A(+i), [a1 + 1, b1 + 1] , [a2 + 1, b2 + 1] , . . . , [an−1 + 1, bn−1 + 1] , [an + 1, bn]}

= B.

If A(+i) = bn + 1, then B = sh(A). Otherwise, the two vertices on P that
immediately follow B are

{A(+i), [a1 + 1, b1 + 1] , [a2 + 1, b2 + 1] , . . . , [an−1 + 1, bn−1 + 1] ,

[an + 1, bn + 1]},
{[a1 + 1, b1 + 1] , [a2 + 1, b2 + 1] , . . . , [an−1 + 1, bn−1 + 1] , [an + 1, bn + 1]}

= sh(A).

This shows that if a k-set A is on C then its shift is on C as well. Applying
the same argument repeatedly, we get that the vertex sht(A) is on C for all t > 1.
By Lemma 6, the same applies to each (k + 1)-set on C.

(ii) Immediate from (i) and Lemma 5.

(iii) Follows from Lemma 6 and the proof of (i).

(iv) We assume that |A| = k and note that the argument for the case |A| =
k + 1 is analogous. We retain the notation of the proof of part (i). This proof
shows that only one (k + 1)-set on the path P from A to sh(A), namely mi(A),
contains the number a1. Similarly, the only (k + 1)-set on the shorter subpath
of C from sh2k(A) to A containing the element bn is mi+1(A). Since A ⊂ B, the
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A

sh(A)

+i

Figure 2: The path P in the proof of Lemma 7 (i).

set B contains both a1 and bn. It follows that either B is a neighbor of A, or
dC(A,B) > dC(A, sh(A)). 2

Theorem 8 For i ∈ {1, . . . , k + 1}, the union Mi of the matchings mi, mi+1

and mi+2 is a 3-connected graph.

Proof. By Theorem 4, the cubic graph Mi is connected. To establish the
theorem, it is enough to show that Mi is 3-edge-connected. For the sake of
contradiction, let F be any edge-cut of size 1 or 2 in Mi. The matchings mj

(i ≤ j ≤ i+2) induce a 3-edge-coloring of Mi, and the well-known Parity Lemma
of Blanuša (see, e.g., [12, Lemma 3.7.2]) implies that the parity of |mj ∩ F | is
the same for all j ∈ {i, i+ 1, i+ 2}. It follows that |F | = 2 and both edges of F
come from the same matching mp.

Let the set of vertices of a component of Mi − F be denoted by R, and set
S = V (Mi) − R. Suppose first that p = i. Let C be the cycle of mi ∪ mi+1

containing the edge x. By parts (i) and (iii) of Lemma 7, there is a vertex A
on C such that A ∈ R and sht(A) ∈ S for some t ≤ 2k. Let C ′ be a cycle of
mi+1 ∪mi+2 passing through A. Since F only contains edges from mi, all the
vertices of C ′ are in R. Thus, by Lemma 6, sht(A) ∈ R, a contradiction. An
analogous argument applies if p = i+2. Thus, we are left with the case p = i+1.

Let C be a cycle of mi ∪mi+1 that contains F . Write P1 and P2 for the two
paths of C−F , assuming |P1| ≤ |P2|. Let Ax denote the vertex of P1 incident with
an edge x ∈ F . Without loss of generality, we assume that P1 ⊂ R. Suppose
first that the vertex B = mi+2(Ax) is on C as well. Then, by Lemma 6 and
Lemma 7 (iv), there is an r with the property that shr(Ax) ∈ P1, but B′ ∈ P2,
where z = {shr(A), B′} ∈ mi+2. This would mean that z ∈ F and |F | > 2.
Thus, B = mi+2(Ax) /∈ C. We infer that B is on the cycle C ′ of mi+1∪mi+2 that
passes through x. Clearly, B ∈ R, for otherwise |F | > 2. By the same token as
above, y is on C ′ as well. Assume that, for some t, sht(B) ∈ S. Consider a cycle
C ′′ of mi ∪mi+1 passing through B. As B is not on C, all vertices of C ′′ are in
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R. By Lemma 7 (i), all the shifts of B are in C ′′, which contradicts the fact that
sht(B) is in S, and we get |F | > 2. We need to consider now the case that for
all t, sht(B) ∈ R. Let T1 and T2 denote the two paths of C ′ − F , and suppose
that B is on T1. As sht(B) is on T1 for all t ≥ 0, then, by Lemma 7 (iii), for any
E on C ′, there is at most one te < 2k + 1 so that shte(E) is on T2. However, Ax
is on both P1 and C ′, and |P1| ≤ |P2| leads to a contradiction with the previous
statement as |P1| ≤ |P2| implies (Lemma 7 (iii)) that at least two distinct shifts
of Ax have to be on P2 ⊂ S, hence on T2. The proof is complete. 2

Corollary 9 The prism over the graph Bk is hamiltonian.

Proof. By [9] (see also [1]), any 3-connected cubic graph has a hamiltonian
prism. Thus, the assertion follows from Theorem 8. 2

We remark that Corollary 9 can also be directly derived from Theorem 4,
by showing that a connected cubic bipartite graph has a hamiltonian prism.
We conclude the paper with the following observation on 2-trails (defined in
Section 1):

Corollary 10 The graph Bk has a 2-trail.

Proof. Adding any matching mj (j /∈ {i, i+ 1, i+ 2}) to Mi, we obtain a
connected spanning 4-regular subgraph of Bk. Any Euler trail of this subgraph
is a 2-trail in Bk. 2
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