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Abstract

The prism over a graph G is the Cartesian product G2K2 of G with the
complete graph K2. If G is hamiltonian, then G2K2 is also hamiltonian
but the converse does not hold in general. Having a hamiltonian prism is
shown to be a good measure how close a graph is to being hamiltonian.
In this paper, we examine classical problems on hamiltonicity of graphs in
the context of hamiltonian prisms.

1 Introduction

The hunt for Hamilton cycles in graphs is one of the oldest and also one of the
most investigated topics in graph theory. Its origins can be traced to the search
for a knight’s tour on a chess board in the 9-th century through Euler’s 1759
classical paper, Solution d’une question curieuse qui ne paroit soumise a aucune
analyse (Solution of a curious question that does not seem to have been subject
to any analysis), and the formal introduction of the concept by Hamilton in
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1857. Today, there are numerous theorems, conjectures (both open and refuted),
surveys and web sites dedicated to this hunt. A recent survey by Gould [14]
contains a list of 248 papers on the subject that were published during the last
10 years of the 20th century.

Recent trends suggest developing measures for testing how “close” a given
graph G is to being hamiltonian. One trend for instance, is to look for long
cycles. As an example, consider Havel’s conjecture that the middle level of the
(2d − 1)-cube is hamiltonian. Recently, Johnson [18] proved that it contains a
cycle of length (1 − o(1))n. Other researchers look for related structures. A
Hamilton cycle is a spanning connected 2-regular subgraph. Why not look for a
spanning 3-connected cubic graph? A Hamilton cycle is a spanning closed walk
in which every vertex is visited once. It is natural to relax this approach and ask
for a spanning walk in which vertices may be visited more than once. A k-walk
is a spanning closed walk visiting no vertex more than k times. A Hamilton cycle
is then a 1-walk. Another closely related notion is that of a k-tree: k-tree is
a spanning tree with all vertices of degree at most k (in particular, a 2-tree is
precisely a hamiltonian path). It is not hard to show [17] that any graph with a
k-tree has a k-walk, and that the existence of a k-walk guarantees the existence
of a (k + 1)-tree, for any k. Hence, we have the following chain of implications:

1-walk (Hamilton cycle) ⇒ 2-tree (Hamilton path) ⇒ 2-walk ⇒ 3-tree ⇒ . . .

This suggests a “natural” hierarchy for measuring how “close” a graph is to being
hamiltonian. This approach is highlighted in survey [9] by Ellingham.

The central theme of the present paper is another relaxation of hamiltonicity:
the property of having a hamiltonian prism. The prism over a graph G is ob-
tained by taking two copies of G and adding a perfect matching joining the two
copies of each vertex by an edge. The property of having a hamiltonian prism is
‘sandwiched’ between the existence of a 2-tree and the existence of a 2-walk:

2-tree ⇒ Hamiltonian prism ⇒ 2-walk (1)

None of the above implications is an equivalence. In this respect, proving that
a graph previously known to have a 2-walk is prism-hamiltonian is a stronger
result.

Let us consider the first of the implications. If G has a Hamilton path (2-
tree), then its prism is hamiltonian: just take the Hamilton path in each copy
and add the two edges necessary to make a Hamilton cycle in the prism. The
converse implication does not hold since the complete bipartite graph K2,4 has
no Hamilton path and its prism is hamiltonian (see Figure 1).

As for the second implication in (1), any graph G with a hamiltonian prism has
a 2-walk that follows the edges of G corresponding to the edges of the Hamilton
cycle in the prism. Again, the converse does not hold as shown by the graph in
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Figure 1: A Hamilton cycle in the prism over K2,4.

Figure 2: A graph with a 2-walk but with a non-hamiltonian prism.

Figure 2 which has a 2-walk but its prism is clearly non-hamiltonian. Similar
examples can be constructed with arbitrarily large connectivity, see Section 6.

Summing up: the property of having a hamiltonian prism is properly sand-
wiched between being hamiltonian and the existence of a 2-walk. The initial
interest in prism hamiltonicity may be traced to the attempt to tackle the con-
jecture of Barnette [15] that the graphs of simple 4-polytopes are hamiltonian
(the conjecture is still open). Another early example of this interest are the
prisms over 3-connected planar graphs. Rosenfeld and Barnette [22] showed, in
1973, that cubic planar 3-connected graphs have hamiltonian prisms if the Four
Color Conjecture (open at that time) was true. Fleischner [12] found a proof
avoiding the use of the Four Color Theorem. Eventually, Paulraja [21] showed
that planarity is inessential here.

Theorem 1.1. Any 3-connected cubic graph has a hamiltonian prism.

Many classical questions that have been asked about the existence of Hamilton
cycles or paths provide us with the opportunity to revisit and reconsider them
under the prism paradigm. Indeed, each of Sections 3 to 7 of this paper is
inspired by one of such classical problems. Some of our questions have been
already solved in the positive, some in the negative and others still remain open.
Our main interests in this paper is focused on the following classes of graphs:
planar graphs (Section 3), line graphs (Section 4), 4-regular graphs (Section 5),
tough graphs (Section 6), and squares of graphs (Section 7)
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The spirit of this paper is encapsulated in the following example. A classi-
cal theorem of Tutte [26] states that all 4-connected planar graphs are hamil-
tonian. There are well-known examples of non-hamiltonian 3-connected planar
graphs. Barnette [2] proved in 1967 that planar 3-connected graphs (skeletons
of 3-polytopes) have a spanning 3-tree. Gao and Richter [13] showed that 3-
connected planar graphs have 2-walks, that is closer to being hamiltonian in the
suggested hierarchy. Can we further strengthen this result by showing that the
prisms over 3-connected planar graphs are hamiltonian? Clearly, this would be
the best possible result as the next level in our hierarchy are graphs with 2-walks
and there are examples of 3-connected planar graphs without 2-walks.

Conjecture 1.1. Any 3-connected planar graph is prism-hamiltonian.

2 Notation and definitions

We refer to graphs that can have parallel edges to as multigraphs; if not said
otherwise, a graph means a simple graph with no loops. The definition of the
prism can also be rephrased as follows: the prism over G is the Cartesian product
G2K2 of G with K2. We identify G with one of its two copies in G2K2 and the
two “clones” of a vertex v ∈ V (G) are denoted by v and v∗. The same notation
is used for edges. Edges of the form vv∗ are referred to as vertical.

There is a convenient way of representing 2-factors in G2K2 by certain edge
colorings of the graph G (a similar coloring scheme was defined in [7] in relation
to hamiltonian decompositions). Any 2-factor F in G2K2 induces a coloring of
a subset of E(G) in three colors (blue, yellow and green), defined as follows. For
any edge e ∈ E(G) (see Figure 3),

e is colored







blue (drawn as a dotted line) if F contains e but not e∗,
yellow (drawn as a dashed line) if F contains e∗ but not e,
green (a dashed-and-dotted line) if F contains both e and e∗.

The subgraph Gpr of G, consisting of the blue, yellow and green edges derived
from a 2-factor in G2K2, is a spanning subgraph of G. The maximum degree of
a vertex in Gpr is 4, in which case the vertex must have 2 yellow and 2 blue edges
incident with it. A vertex of degree 1 must have a single green edge incident with
it, a vertex of degree 2 has either 2 green or a yellow and blue edge incident with
it and a vertex of degree 3 must have a yellow, blue and green edges incident with
it. If a blue-yellow-green-edge-colored graph derived from a 2-factor (or even a
Hamilton cycle) is given, it is easy to reconstruct the corresponding 2-factor as
illustrated in Figure 3. See also [7].

While we do not have a full characterization of all possible blue-yellow-green
edge colored graphs derived from 2-factors or even Hamilton cycles in G2K2, we
make use of a useful sufficient condition for prism-hamiltonicity from [7].
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Figure 3: (a) A coloring of the complete graph K4 (an uncolored edge is shown
black). (b) The corresponding Hamilton cycle (bold).

A spanning cactus in a graph G is a spanning connected subgraph H consisting
with no two distinct cycles intersecting at a vertex. The cactus is said to be even
if all of its cycles are of even length, i.e., G is a bipartite graph (see Figure 4).

Figure 4: An even cactus.

Assume now that G has a spanning even cactus H , color the edges of the
cycles blue and yellow (in an alternating way), and color all the other edges of
H green. We refer the reader to [7] for an easy proof of the following proposition
and for an application of it, providing an alternative proof of Theorem 1.1 (see
[7]).

Proposition 2.1 ([7]). If G contains a spanning even cactus, then its prism is
hamiltonian.

3 Planar graphs

In 1946, Tutte constructed an example of a non-hamiltonian cubic 3-connected
graph. There are infinitely many such graphs. On the other hand, cubic 3-
connected graphs (planar or not) are prism-hamiltonian by Theorem 1.1. In fact,
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cubic 3-connected planar graphs are conjectured in [1] to have a much stronger
property, namely that their prism can be decomposed into two disjoint Hamilton
cycles. In the case of cubic 3-connected planar bipartite graphs, the existence of
such a decomposition was proved in [7].

We remark that Conjecture 1.1 cannot be extended to 2-connected planar
graphs: for instance, the complete bipartite graph K2,n, n ≥ 5, is 2-connected
and planar, but its prism is not hamiltonian. Conjecture 1.1 is open even for
planar triangulations. In the following subsections, we prove the conjecture for
two classes of 3-connected planar graphs, namely for chordal 3-connected planar
graphs (kleetopes) and for Halin graphs. Let us remark that Biebighauser and
Ellingham [3] have recetnly extended our result on kleetops and they have shown
that 3-connected triangulations of the plane, the projective plane, the torus and
the Klein bottle are prism-hamiltonian.

3.1 Kleetopes

A kleetope is a plane graph obtained from a drawing of the complete graph K4

by successive subdivisions of internal faces. (A face F is internal if it differs from
the infinite face; the subdivision of F consists in adding a new vertex vF inside
F , and joining it to all the three vertices of F .) See Figure 5a for an example of
a kleetope.

Recall that a graph is chordal if it contains no chordless cycle of length ≥ 4.
It is known that kleetopes coincide with (drawings of) 3-connected chordal planar
graphs. (This observation is implicit in [25, Section 2].) As a partial result in
the direction of Conjecture 1.1, we shall show that 3-connected chordal planar
graphs (i.e., kleetopes) are prism-hamiltonian.

(b)(a)

Figure 5: (a) A kleetope G. (b) The structure tree of G.

An internal vertex of a kleetope G is any vertex not incident with the infinite
face of G. The depth λ(v) of a vertex v is defined as follows. In any drawing of
K4, the depth of the internal vertex is 0 and the depths of the other vertices are
−1. If G arises from G′ by subdividing an internal face F = x1x2x3, then the
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depth of the new vertex vF is λ(vF ) = maxλ(xi) + 1 and all the other depths are
as in G′.

Observe that in any G, there is no edge joining internal vertices of the same
depth. It follows that every vertex v with λ(v) > 0 has a unique neighbor p(v)
(the parent of v) such that λ(p(v)) = λ(v) − 1.

We may define the structure tree T (G) of G as the tree on all internal vertices
of G such that every edge of T joins an internal vertex v (of positive depth) to
its parent. (See Figure 5b.) In particular, note that if G is any drawing of K4,
then T (K4) consists of a single vertex. In all other cases, the leaves of T (G) are
precisely all internal vertices of degree 3, plus possibly the unique vertex of zero
depth.

Lemma 3.1. Every kleetope G can be obtained from K4 by a sequence of steps,
each of which is the simultaneous subdivision of one, two or three faces containing
a common internal vertex of degree 3.

Proof. Consider the structure tree T (G) of a given kleetope G. We may assume
G 6= K4, so let m be a leaf of T (G) of the largest depth, and let u be the parent of
m. Remove all children of u (the leaves whose parent is u) to obtain a graph G′

which, by the induction hypothesis, can be constructed as stated in the lemma.
The vertex u, being a leaf of T (G′), is of degree 3 in G′. Subdividing all the faces
of G′ incident with u which correspond to the removed leaves of T (G), we obtain
the desired construction of G.

Consider a coloring of the graph G associated to a Hamilton cycle C of the
prism over G. Recall that an edge e is green in this coloring if and only if both e
and e∗ are in C. We shall say that the green edge e is balanced (in the coloring)
if C traverses e and e∗ in different directions.

Theorem 3.2. The prism over any kleetope is hamiltonian.

Proof. We prove (by induction) the stronger statement that the prism over any
kleetope G contains a Hamilton cycle H such that in the associated coloring of
G,

(*) every degree 3 internal vertex v is incident with at most two
colored edges, and if these are two green edges, then they are balanced.

For G = K4, such a Hamilton cycle is shown in Figure 3b. Thus let G arise
from G′ by subdividing some faces sharing an internal vertex x of degree 3, as
in Lemma 3.1. The neighbors of x in G′ are denoted by a, b, c. We let the new
vertices of G be denoted by (some of) the letters A, B, C, where A subdivides
the face not containing a, and analogously for B and C. By symmetry, we may
distinguish only 3 cases: the set N of the new vertices is {A}, {A, B} or {A, B, C}.
Each of the cases splits up into several subcases depending on which edges are
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used by the Hamilton cycle H ′ of G′. We give tables indicating how the coloring
is to be extended to G in each subcase (symmetric subcases omitted). The first
column of the tables lists all the possible combinations of colors of the edges
adjacent to x (subject to (*) and up to symmetry). To perform the modification,
first uncolor all edges listed in the first column, and then apply the coloring in
the second column. A path with all edges green is referred to as a green path.
Similarly, a blue-yellow path has edges colored alternatingly blue and yellow,
starting with blue.

It is straightforward to check that the extended colorings do correspond to
Hamilton cycles satisfying (*).

Case 1. There is one new vertex A.

a b

c

x
A

replace: with:
green ax green axA
green cx green cxA

blue-yellow axb blue-yellow axb + green xA
blue-yellow cxb blue-yellow cxb + green xA

green axb green axAb
green cxb green cxAb

Case 2. There are two new vertices: A and B.

a b

c

x
AB

replace: with:
green ax green aBxA
green cx green cBxA

blue-yellow axb blue-yellow aBxAb
blue-yellow cxb blue-yellow cBxAb

green axb green aBxAb
green cxb green cBxAb

Case 3. The new vertices are A, B and C. In this case, there is more symmetry
and only 3 subcases to consider.

a b

c

x
A

xx
B

C

replace: with:
green ax blue-yellow aBxCa + green xA

blue-yellow axb blue-yellow aBxAb + green xC
green axb blue-yellow aBxAbCa

The last subcase of Case 3 deserves a comment. This is where the provision
on balanced green edges is used. Indeed, if the edges in the green path axb were
not balanced, we would obtain a disconnected 2-factor after the modification.
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3.2 A generalization of Halin graphs

A Halin graph is a plane graph such that removing all edges of its outer face F ,
we obtain a tree T whose leaves are precisely the vertices on F , and T has no
vertices of degree 2.

We consider Halin graphs in connection to Conjecture 1.1 as an interesting
class of 3-connected planar graphs. It turned out that our proof that Halin graphs
have hamiltonian prisms can be applied to a much larger class of graphs, defined
as follows. A generalized Halin graph (over C) is any union of a cycle C and
a tree T such that C and T are edge-disjoint, and V (C) is the set of all leaves
of T . Thus, compared to the definition of Halin graphs, we do not require the
planarity and allow degree 2 vertices in the tree. (See Figure 6 for a drawing of
the Petersen graph as a generalized Halin graph.)

Figure 6: The Petersen graph as a generalized Halin graph over the dashed cycle.

Lemma 3.3. Let T be a tree and let r be a vertex of T of degree at least 2. Then
T contains a spanning system P of (possibly trivial) paths, such that

(i) the paths in P are vertex-disjoint, and

(ii) each P ∈ P contains exactly one leaf v of T , and v is an endvertex of P ,

(iii) r is an endvertex of some path in P.

Proof. Orient all edges of T away from r to obtain an oriented tree ~T . Let P be
a system of directed paths spanning all leaves of T , satisfying (i) and (ii), and
spanning as much of T as possible. (To see that at least one system with the
required properties exists, consider the system of trivial paths {v} for all leaves
v of T .) Assume P does not span T and choose v /∈

⋃

P∈P
V (P ). Since v is not

a leaf of T , there is a vertex v+ such that vv+ ∈ E(~T ). By a suitable choice of v,

we may assume that v+ is contained in some path P ∈ P. Since all vertices of ~T
have in-degree ≤ 1, the path P must begin at v+. But then we can augment it
by the edge vv+, a contradiction with the choice of P.
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Theorem 3.4. Generalized Halin graphs have hamiltonian prisms.

Proof. Let G be a generalized Halin graph over a cycle C. If C is even, then color
it alternatingly blue and yellow, find a system P of paths in T = G − E(C) as
in Lemma 3.3 (for an arbitrary r /∈ V (C)), and color every path from P green.
This coloring clearly corresponds to a Hamilton cycle of G2K2.

In the rest of the proof, we assume that C is odd. For each e ∈ E(C), let Ce

be the unique cycle in T ∪ {e}. Writing |Ce| for the length of Ce, we claim that

∑

e∈E(C)

|Ce| is odd. (2)

To begin with,

∑

e∈E(C)

|Ce| = |C| +
∑

e∈E(T )

|{ f ∈ E(C) : e ∈ Cf }|

= |C| +
∑

e∈E(T )

|{ f ∈ E(C) : f joins the components of T − e }|.

For e ∈ E(T ), let Re denote the set of all edges of C joining the two compo-
nents of T − e. Since |C| is odd, it is enough to prove that |Re| is even for any
e ∈ E(T ). Clearly, Re is an edge cut in G − e. It is a standard fact that any
cycle intersects any edge cut in an even number of edges. Applying this fact to
the cycle C, we infer that Re (which is a subset of C) contains an even number
of edges, and (2) is established.

From (2) it follows that there is an edge h ∈ E(C) with odd |Ch|. Let U be
the set of vertices of Ch not incident with h. Apply Lemma 3.3 to the graph
obtained from T by the contraction of U to a single vertex u (discarding loops),
setting r = u. In the resulting system of paths, remove u from the path which
contains it (as an endvertex). The outcome is a system P of vertex-disjoint paths
in G spanning V (G)−U , disjoint from U , and such that each path has precisely
one endvertex on C.

Make the even cycle C ′ = C∪Ch−h an alternating blue-yellow cycle. Further-
more, color each path in P green. As before, this coloring determines a Hamilton
cycle in the prism over G. The proof is finished.

4 Line graphs

Recall that if G = (V, E) is a graph, then its line graph L(G) has vertex set E,
and e1, e2 ∈ E are joined by an edge in L(G) if e1 is adjacent to e2 in G. We
simply say that H is a line graph if there exists a graph G such that H = L(G).

A prominent conjecture concerning the Hamiltonicity of line graphs was stated
by Thomassen [24].
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Figure 7: Replacing a vertex v with two new vertices in the proof of Lemma 4.1.

Conjecture 4.1 (Thomassen’s conjecture). Every 4-connected line graph is
hamiltonian.

The conjecture is open even if we replace ‘4-connected’ by ‘6-connected’.
Zhan [28] and Jackson [16] independently proved that 7-connected line graphs
are hamiltonian. On the other hand, there are examples of 3-connected non-
hamiltonian line graphs: for instance, let P ′ be obtained by subdividing each
edge of the Petersen graph P by one vertex. The line graph of P ′ is P with each
vertex ‘inflated’ to a triangle. Thus it is 3-connected, and any Hamilton cycle in
L(P ′) would clearly yield a Hamilton cycle in P , which does not exist.

In contrast, we show that for prism-hamiltonicity, it is enough if the line graph
is 2-connected.

4.1 2-connected line graphs are prism-hamiltonian

In the rest of this section, parallel edges are allowed—so we deal with multi-
graphs. Most graph definitions carry over naturally to this setting. Multiplicities
are counted in vertex degrees (which is important when we speak of cubic multi-
graphs) and in the size of an edge cut (which affects the notion of a bridgeless
multigraph). In the line graph of a multigraph G, vertices corresponding to a pair
of parallel edges are joined by parallel edges. Thus, L(G) is, properly speaking,
a multigraph too.

In the following lemma, the contraction of a subtree T ⊂ G consists in con-
tracting every edge of T , discarding the loops but preserving any parallel edges.

Lemma 4.1. Let G be a bridgeless multigraph with minimum degree at least 3.
Then, there exists a cubic bridgeless multigraph G3 such that G can be obtained
by the contraction of some pairwise disjoint induced subtrees of G3.

Proof. We define the excess of G to be the following sum:

exc(G) =
∑

v∈V (G)

(degG(v) − 3)

The proof proceeds by induction on the excess exc(G) of the graph. If exc(G) = 0,
then G is cubic and the statement is trivial.

Assume exc(G) > 0 and consider a vertex v with d := degG(v) > 3. Let e1

be any edge incident with v. Since G is bridgeless, there is a cycle of G which
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contains the edge e1. Let e2 be the other edge of this cycle which is incident with
v. Let e3, . . . , ed be the remaining edges incident with the vertex v. Replace the
vertex v by two new vertices v1 and v2, making the edges e1 and ed incident with
v1, the remaining edges e2, e3, . . ., ed−1 with v2, and adding a new edge v1v2 (see
Figure 7). Let G′ be the resulting graph. Note that exc(G′) = exc(G) − 1 and
G may be obtained from G′ by contracting the edge v1v2. Furthermore, G′ is
bridgeless: the only possible bridge may be v1v2, but this edge is contained in the
above cycle through e1 and e2, so G′ is bridgeless indeed. We apply induction
to G′, obtaining a graph G3. To get the subtree Tv of G3 corresponding to the
vertex v of G, take the subtrees of G3 corresponding to v1, v2 ∈ V (G′) and join
them by an edge of G3 incident with both these subtrees. Note that such an edge
exists since v1v2 ∈ E(G′). Clearly, Tv is an induced subtree of G3, because there
are no parallel edges between v1 and v2 in G′.

We define an eulerian factor of a multigraph G to be a (not necessarily con-
nected) spanning subgraph of G with all degrees even. Note that the terminology
is not quite unified here as different authors might use the term ‘even factor’ or
‘spanning cycle’, reserving ‘eulerian factor’ for a connected spanning subgraph
with even degrees.

Lemma 4.2. Let G be a bridgeless multigraph with minimum degree at least 3.
Then, G contains an eulerian factor G′ such that the degree of each vertex is
non-zero in G′.

Proof. By Lemma 4.1, let G3 be a cubic bridgeless multigraph such that G can be
obtained from G3 by the contraction of pairwise disjoint induced subtrees { Tv :
v ∈ V (G) }. Since G3 is bridgeless and cubic, it contains a 1-factor by the well-
known Petersen theorem (which does apply to multigraphs). The complement
of the 1-factor is a 2-factor. Let E be the set of the edges of the 2-factor which
correspond to the edges of the original graph G (i.e., they are not included in any
Tv). Consider a vertex v. Since each cycle which enters Tv has to leave it, the
number of edges of the 2-factor incident with Tv is even. This number is non-zero
because Tv is acyclic. Since the vertices of G can be obtained from G3 by the
contraction of the subtrees Tv, each vertex of G is incident with an even number
of edges of E. Hence E forms the desired eulerian factor of G.

Theorem 4.3. Let G be a multigraph. If L(G) is 2-connected, then the prism
over L(G) contains a Hamilton cycle.

Proof. We first modify G to get another multigraph G0. Let E1 be the set of
edges of G such that their one of their endvertices has degree one. If E1 = E(G),
G has to be a star and the statement of the theorem is trivial. Assume henceforth
that E1 6= E(G). Remove the edges in E1, along with all the isolated vertices
this creates. The resulting graph G− is bridgeless, since any bridge would yield
a cut-vertex in L(G), contradicting the assumption that L(G) is 2-connected.
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Figure 8: The graph G= with the eulerian factor F . For clarity, some vertices of
G= are shown with degree 2.

If all the vertices of G− have even degrees, then G− contains an Euler tour.
Hence L(G−) is hamiltonian. In fact, it is easy to see that L(G) is hamiltonian
as well, so in particular, its prism has a Hamilton cycle.

In the following, we assume that G− contains a vertex of odd degree.
Suppress all the vertices of degree two of G−. The resulting multigraph G=

is bridgeless and its minimum degree is at least 3. Fix an eulerian factor F of
G= which exists by Lemma 4.2. Let k be the number of the components of F .
We shall assign colors to edges of G= and later also to those of G. All the edges
included in F will be colored black (see Figure 8).

Let us introduce two operations we shall use in the proof. A splitting of a
vertex v amounts to replacing it with two new vertices v′ and v′′ in such a way
that each edge incident with v is made incident with exactly one of v′ and v′′.
No edge v′v′′ is added. Note that if a multigraph H is obtained by splitting some
vertices of G, then L(H) is a spanning subgraph of L(G). In particular, to prove
that L(G) is (prism-)hamiltonian, it suffices to prove the same for L(H).

The detachment of an edge uv from the vertex v consists in splitting v into
two vertices such that one of the new vertices is incident only with the edge uv.

Assume first that the eulerian factor F is 2-regular, i.e., each of its components
is a cycle. (See Figure 9.) The general case will be addressed at the end of the
proof. Choose a set of k− 1 edges such that F together with these edges forms a
connected subgraph of G=. Color these k − 1 edges red. We claim that G= must
contain an edge which is neither black nor red. If it does not, then any red edge
is a bridge in G=, which is assumed not to exist. Thus all edges are black, which
implies k = 1. Hence G= is a cycle, which contradicts the assumption that G−

contains a vertex of odd degree. We have shown that there is some edge o which
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Figure 9: Black, red (drawn as bold), orange (drawn as bold and dashed) and
gray edges of G=. Again, some degrees are 2 for the sake of clarity.

is neither red nor black as claimed.
Color the edge o in orange and detach it from one of its endvertices. The edges

that have no color so far are now colored gray, and each gray edge is detached
from an arbitrary endvertex of it. (Cf. Figure 9.)

We now carry the coloring over to the original graph G. All the edges of
each path comprised of suppressed vertices of degrees 2 get the color of the
corresponding edge of G= (Figure 10). The removed pendant edges of E−E1 are
colored gray and each of them is detached from one of its end-vertices. Gray edges
incident solely with orange (red) edges are recolored orange (red), respectively.
Let G0 be the resulting colored graph (Figure 11).

We use the coloring scheme introduced in Section 2 to prove that the prism
over L(G0) (and thus also the prism over L(G)) contains a Hamilton cycle. The
black cycles together with red edges form a tree-like structure. Root this tree at
the (unique) cycle incident with the orange edge o. We form yellow-blue cycles
first (stressing that the cycles exist in the line graph, not in G0 itself). Apply the
following to each black cycle of G0. Let EC be the set of all black edges forming
the cycle together with all the gray, red and orange edges incident with it. Let er

be the red edge joining the black cycle to the parent cycle, i.e., the cycle closer to
the root. If the black cycle is the root cycle, then er is the orange edge incident
with it. The yellow-blue cycle is obtained as follows (see Figure 12):

• If |E|C is even, the cycle is created on the vertices of L(G) corresponding
to the edges in EC ⊆ E(G0).

• If |E|C is odd, the cycle is created on the vertices of L(G) corresponding to
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Figure 10: Colors assigned to edges of G before restoring any pendant edges. The
used notation is the same as in Figure 9.

Figure 11: The graph G0 with all its edges. The used notation is the same as in
Figure 9.
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Figure 12: The graph G0 with the created yellow-blue cycles corresponding to the
black cycles and green edges joining red edges not included into the yellow-blue
cycles. The used notation is the same as in Figures 3 and 9.

the edges of G0 in EC−{er}, and the vertex corresponding to er is joined by
a green edge to an arbitrary vertex corresponding to a black edge incident
with er.

Next, we add green edges (see Figure 13):

• Add green paths corresponding to red paths with suppressed vertices of
degree two. These paths include incident red pendant edges if there are
any.

• Add green paths corresponding to gray subtrees ending in a gray edge
incident with a black cycle. Do the same for the orange subtree ending in
the orange edge incident with the root black cycle. These green paths end
at the vertex corresponding to their green/orange edges incident with the
black cycles.

It is straightforward to check that the yellow-green-blue edges represent a Hamil-
ton cycle in the prism over G0 through the correspondence explained in Section 2.

It remains to explain how to deal with the case where F (the eulerian factor
of G=) has vertices of degree larger than 2. We make each component of F into
a cycle by splitting all vertices w of degree ≥ 4 in F ; the edges incident with w
can be made incident with any of the vertices obtained by splitting w (compare
Figs. 8 and 9). As remarked above, it suffices to prove the Hamiltonicity of the
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Figure 13: The graph G0 with all the yellow, green and blue connections. The
used notation is the same as in Figures 3 and 9.

prism over the multigraph obtained from the splitting. We have reduced the
general situation to the former case.

An immediate corollary of Theorem 4.3 is the following:

Corollary 4.4. The prism over the line graph of any bridgeless graph is hamil-
tonian.

4.2 Claw-free graphs

Many results on line graphs carry over to the wider class of claw-free graphs,
i.e., graphs containing no induced subgraph isomorphic to K1,3. For instance,
it is known [23] that 7-connected claw-free graphs are hamiltonian, and that
Thomassen’s conjecture implies that 4-connected claw-free graphs are hamilto-
nian. We conjecture the following:

Conjecture 4.2. Any 2-connected claw-free graph is prism-hamiltonian.

In fact, the conjecture has recently been shown to be true by Čada [6]:

Theorem 4.5. Any 2-connected claw-free graph is prism-hamiltonian.
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5 4-regular graphs

4-regular, connected graphs clearly have a 2-walk (an Eulerian cycle is a 2-walk).
Nash-Williams [20] posed the question whether every 4-connected 4-regular graph
is hamiltonian. The first example showing that this is not the case was the graph
M in Figure 14a, constructed by Meredith [5]. The construction is as follows. Let
P ′ be the (4-regular) graph obtained by doubling a 1-factor in the Petersen graph.
For each vertex v of P ′, take a copy Hv of the complete bipartite graph K3,4. The
Meredith graph M arises from the disjoint union of these copies by adding edges
in such a way that M is 4-regular, and that there is an edge between Hv and Hw

whenever vw is an edge of P ′. Clearly, M is defined uniquely up to isomorphism.
To see that it is non-hamiltonian, observe that any Hamilton cycle would have to
enter and leave each K3,4 just once, and so it would determine a Hamilton cycle
in the Petersen graph, which does not exist. This construction can be applied
to any cubic 3-connected graph to obtain a 4-regular 4-connected graph and if
the cubic graph is not hamiltonian neither will the resulting 4-regular graph be.
Thus there are even bipartite 4-regular, 4-connected non hamiltonian graphs.

(b)(a)

Figure 14: (a) The Meredith graph M . (b) A spanning even cactus of M .
We use the same notation as in Figure 3.

Proposition 5.1. The Meredith graph M is prism-hamiltonian.

Proof. By Proposition 2.1, it is sufficient to exhibit a spanning even cactus in M .
One such cactus is shown in Figure 14b.

Proposition 5.1, together with the fact that other similarly constructed ex-
amples are also prism-hamiltonian, lead us to the following attempt to resucitate
Nash-Williams conjecture.

Problem 1. Are all 4-connected 4-regular graphs prism-hamiltonian?
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An interesting class of 4-regular graphs consists of the line graphs of cubic
graphs. By Theorem 4.3, if such a graph is 2-connected, then it has a hamilto-
nian prism. It follows that if Problem 1 is restricted to line graphs, the answer is
affirmative. In connection to this question, it is perhaps worth noting that Con-
jecture 4.1 is easily seen to be equivalent to the statement that all 4-connected
4-regular line graphs are hamiltonian.

6 Toughness and connectivity

As mentioned in Section 1, there are examples of graphs of arbitrarily high con-
nectivity which have 2-walks, but whose prisms are non-hamiltonian. We shall
now construct one such family of graphs. For a positive integer k, let Hk be
the graph consisting of three copies H1

k , H
2
k , H

3
k of the complete bipartite graph

K2k,4k−1, and a matching M connecting one half of the smaller color class of H1
k

to one half of the smaller color class of H2
k , and similarly for the other pairs of

indices. (See Figure 15 for a picture of H2.) The graph Hk is 2k-connected, has
a 2-walk, and the following argument shows that its prism is not hamiltonian.

Assume that the prism over Hk has a Hamilton cycle C. The cycle intersects
the prism over H1

k in a union C1 = P1 ∪ . . . ∪ Ps of disjoint paths. We aim to
show that s = 1. Let A and B denote the smaller and the larger color class of
H1

k , respectively. Consider the path Pi, where 1 ≤ i ≤ s. Assume Pi contains
m vertices of A2K2. These vertices split Pi up into m − 1 paths, each of which
contains at most 2 vertices from B2K2. Thus the number of vertices of B2K2

on Pi is at most 2m − 2. Summing over all i, we get

2|B| ≤ 4|A| − 2s,

since P1 ∪ . . . ∪ Ps spans the prism over H1
k . Thus

s ≤ 2|A| − |B| = 1

as claimed. By symmetry, C must intersect the prisms over H2
k and H3

k in con-
tiguous paths (C2 and C3, respectively) as well.

Since each Hj
k has an odd number of vertices, the path Cj enters Hj

k2K2 and
leaves it in different copies of Hk. This, however, cannot be true for all three Hj

k’s
simultaneously. Therefore, the prism over Hk contains no Hamilton cycle C.

The above considerations are closely related to the notion of toughness. A
graph G is k-tough if the removal of any m vertices yields a graph with at most
m/k components. The toughness of G is the maximum k such that G is k-tough
(or ∞ if G is complete). In 1973, Chvátal [8] stated the beautiful conjecture that
every 2-tough graph is hamiltonian. Only in 2000, the conjecture was disproved
by Bauer, Broersma and Veldman [4] by constructing non-hamiltonian graphs of
toughness 9/4 − ε (for small ε). A weaker form of the conjecture, that there is
some k such that toughness k implies Hamiltonicity, is still open.
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Figure 15: The graph H2.

The construction from [4] was modified by Ellingham and Zha [10] who ob-
tained (17/24 − ε)-tough graphs with no 2-walk. An upper bound for toughness
that guarantees the existence of a 2-walk was also obtained in [10]: every 4-
tough graph has a 2-walk. These are the best bounds available, but a conjecture
from [17] states that the truth is much closer to the lower bound; namely that a
toughness of 1 is sufficient for the existence of a 2-walk. This would improve a
result of Win [27] that all 1-tough graphs have 3-trees.

We present another modification of the above construction which gives (9/8−
ε)-tough graphs whose prisms are not hamiltonian. Consider the graph A as in
Figure 16 and observe that its prism has no Hamilton path from a to a∗.

u

a

Figure 16: Left: The graph A. Right: The graph G1 (the vertex u is adjacent to
all vertices).

Take 4n+1 disjoint copies A1, . . . , A4n+1 of A and add all edges between copies
of the vertex a. Form a graph Gn by adding an independent set U of n vertices
which are adjacent to every vertex outside U . (See the graph G1 in Figure 16.)

Proposition 6.1. The prism over the graph Gn is non-hamiltonian. The tough-
ness of Gn approaches 9/8 as n → ∞.

Proof. This is a straightforward modification of the argument from [4]. Any
Hamilton cycle C in Gn2K2 contains 2n vertices equal to u or u∗ for some
u ∈ U . Removing these 2n vertices, C breaks up into at most 2n paths, which
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have a total of ≤ 4n endvertices. Since Gn contains 4n + 1 copies of A, some
copy Ai contains no endvertex of any of the paths. This means that C covers all
of Ai by a single path, entering at (the copy of) a and leaving at (the copy of)
a∗. As noted above, this is impossible as A2K2 has no Hamilton path from a to
a∗. Hence C cannot exist.

We compute the toughness of Gn. A toughness set is any nonempty proper
subset T of V (Gn) with the smallest possible ratio between |T | and the number of
components of Gn−T . Clearly, if T is a toughness set, then U ⊂ T and T contains
no vertex whose degree in Ai is 1. Thus each Ai has only three candidates for the
membership in T . It is not hard to see that one possible toughness set contains
(besides U) from each Ai the two vertices of degree 3 in Ai. The toughness of Gn

is therefore (n + 2(4n + 1))/(1 + 2(4n + 1)) = (9n + 2)/(8n + 3) which tends to
9/8 as claimed.

One can consider an analogue of the weaker conjecture of Chvátal.

Conjecture 6.1. There is a constant k such that the prism over any k-tough
graph is hamiltonian.

7 The square of a graph

The k-th power Gk of a graph G is the graph on the same vertices as G, with two
distinct vertices x, y joined by an edge whenever their distance in G is at most k.
A famous result of Fleischner [11] states that the square G2 of any 2-connected
graph is hamiltonian. For prism-hamiltonicity, we can even relax the assumption
of 2-connectivity.

Theorem 7.1. Let T be a tree with more than one vertex. Then the prism over
its square T 2 is hamiltonian.

Proof. We shall show that the prism over T 2 has a particular type of a Hamilton
cycle as described below. Let us first introduce a piece of notation. For a 2-factor
C in T 2

2K2 and the associated coloring of T 2 as in Section 2, we let S(C) denote
the spanning subgraph of T 2 consisting of all edges which are assigned some color.
We claim that the prism over T 2 contains a Hamilton cycle with the following
property (*):

(i) in the associated coloring of T 2, green edges are a subset of E(T ), and each
green edge is a cut edge in S(C),

(ii) adjacent green edges share a vertex whose degree in T is 2,

(iii) no leaf of T has type GG or BBYY.
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The proof is by induction on the number of vertices. The statement is trivial
if T is a tree on ≤ 3 vertices. Assume next that T is a star on n ≥ 4 vertices
with central vertex v. The square T 2 is then the complete graph Kn. If n is even,
take any Hamilton cycle in T 2 and color it blue-yellow to obtain the coloring
defining C. If n is odd, take an even cycle in T 2 through all the leaves of T , color
it blue-yellow and add a green edge from any of the leaves to v. Clearly, this
coloring has the required properties.

If T is not a star, then let v be a vertex all of whose neighbors are leaves of
T , except for exactly one vertex w. Let L be the set of leaves adjacent to v. By
induction, there is a Hamilton cycle C ′ in the prism over (T −L)2 satisfying (*).
To extend the associated coloring c′ to T 2, we distinguish two cases based on the
type of v in S(C ′).

Case 1. The type of v is BY (see Figure 17). Noting that the subtree T1 ⊂ T
on the vertex set L ∪ {v} is a star, find a coloring c1 of T 2

1 as described above.
The extended coloring is obtained simply as the union (superposition) of c1 and
c′. It is straightforward to check that the extension determines a Hamilton cycle
in the prism over T 2 and preserves property (*). We omit the details.

v

T − L

v

T − L

Figure 17: Extending the coloring when v is of type BY (Case 1). The notation
is the same as in Figure 3.

Case 2. The type of v is G or BYG (see Figure 18). This time, consider the
star T2 on L∪ {v, w}. Find a coloring c2 of T 2

2 as above, choosing the green edge
(if there is one) to be different from vw. By (i), the green edge of S(C ′) adjacent
to v is vw and its removal disconnects S(C ′). The desired coloring c is obtained
from c′ by first uncoloring vw and then adding the coloring c2.

We need to show that the associated 2-factor C2 (in the prism) is a Hamilton
cycle. Let P be the path in C2 between v and w, and let Q be the path in C2

between v∗ and w∗. Note that by the construction, P and Q are disjoint, and
all their internal vertices are in L2K2. Furthermore, it is not hard to see that
replacing each of P and Q by an edge, we obtain C ′. The claim that C2 is a
Hamilton cycle follows. Again, it is easy to check that (*) is preserved.

Theorem 7.1 directly implies the following corollary.
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v

T − L

w

v

T − L

w

Figure 18: Extending the coloring when v is of type BYG (Case 2). The notation
is the same as in Figure 3.

Corollary 7.2. The square of any connected graph is prism-hamiltonian. 2

As demonstrated in this paper, many questions may be asked concerning
prism Hamiltonicity. Let us conclude with a question which does not quite fit
into any of the previous sections: Is there an analogue of the well-known Bondy-
Chvátal closure concept for prism-hamiltonicity? In particular, is the following
true?

Problem 2. Let G be a graph of order n and let x and y be two non-adjacent
vertices such that the sum of their degrees is at least n. Is it true that G has a
hamiltonian prism if and only if G + xy does?

The answer to this question is negative but the statement becomes true when
the constraint on the sum of degrees is replaced by 4n/3 − 4/3 as shown by the
second author and Stacho [19]:

References

[1] B. Alspach and M. Rosenfeld, “On Hamilton decompositions of prisms over
simple 3-polytopes”, Graphs Comb. 2 (1986) 1–8.

[2] D. Barnette, “Trees in polyhedral graphs”, Canad. J. Math. 18 (1966) 731–
736.

[3] D. P. Biebighauser and M. N. Ellingham, “Prism-hamiltonicity of triangu-
lations”, manuscript, 2005.

[4] D. Bauer, H. J. Broersma and H. J. Veldman, “Not every 2-tough graph is
hamiltonian”, Discrete Appl. Math. 99 (2000) 317–321.

[5] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications (Macmil-
lan, London, and Elsevier, New York, 1976).

23
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