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1 Introduction

In this paper we consider finite undirected graphs. All the graphs we consider are loopless
(with one exception in Section 3), however we allow the graphs to have multiple edges.
We follow the most common graph-theoretic terminology and notation and for concepts
and notation not defined here we refer the reader to [2]. If ', G are graphs then G — F
denotes the graph G — V(F') and by an a, b-path we mean a path with end vertices a, b.
A graph G is claw-free if G does not contain an induced subgraph isomorphic to the claw
K173.

In 1984, Matthews and Sumner [8] posed the following conjecture.
Conjecture A [8].  Every 4-connected claw-free graph is hamiltonian.

Since every line graph is claw-free (see [1]), the following conjecture by Thomassen is
a special case of Conjecture A.

Conjecture B [12].  Every 4-connected line graph is hamiltonian.

A closed trail T' in a graph G is said to be dominating, if every edge of G has at least
one vertex on 7', i.e., the graph G — T is edgeless (a closed trail is defined as usual, except
that we allow a single vertex to be such a trail). The following result by Harary and
Nash-Williams [6] shows the relation between the existence of a dominating closed trail
(abbreviated DCT) in a graph G and hamiltonicity of its line graph L(G).

Theorem 1 [6]. Let G be a graph with at least three edges. Then L(G) is hamiltonian
if and only if G contains a DC'T.

Let k be an integer and let G be a graph with |E(G)| > k. The graph G is said to be
essentially k-edge-connected if G contains no edge cut R such that |R| < k and at least
two components of G — R are nontrivial (i.e. containing at least one edge). If G' contains
no edge cut R such that |R| < k and at least two components of G — R contain a cycle,
G is said to be cyclically k-edge-connected.

It is well-known that G is essentially k-edge-connected if and only if its line graph
L(QG) is k-connected. Thus, the following statement is an equivalent formulation of Con-
jecture B.

Conjecture C. Every essentially 4-edge-connected graph contains a DC'T.

By a cubic graph we will always mean a regular graph of degree 3 without multiple
edges. It is easy to observe that if G is cubic, then a DCT in G becomes a dominating
cycle (abbreviated DC), and that every essentially 4-edge-connected cubic graph must be
triangle-free, with a single exception of the graph Kj. To avoid this exceptional case, we
will always consider only essentially 4-edge-connected cubic graphs on at least 5 vertices.

Since a cubic graph is essentially 4-edge-connected if and only if it is cyclically 4-edge-
connected (see [5], Corollary 1), the following statement, known as the Dominating Cycle
Conjecture, is a special case of Conjecture C.



Conjecture D. Every cyclically 4-edge-connected cubic graph has a DC.

Restricting to cyclically 4-edge-connected cubic graphs that are not 3-edge-colorable,
we obtain the following conjecture posed by Fleischner [4].

Conjecture E [4].  Every cyclically 4-edge-connected cubic graph that is not 3-edge-
colorable has a DC.

In [10], a closure technique was used to prove that Conjectures A and B are equivalent.
Fleischner and Jackson [5] showed that Conjectures B, C and D are equivalent. Finally,
Kochol [7] established the equivalence of these conjectures with Conjecture E. Thus, we
have the following result.

Theorem 2 [5], [7], [10].  Conjectures A, B, C, D and E are equivalent.

A cyclically 4-edge-connected cubic graph G of girth ¢(G) > 5 that is not 3-edge-
colorable is called a snark. Snarks have turned out to be an important class of graphs for
example in the context of nowhere zero flows. For more information about snarks see the
paper [9]. Restricting our considerations to snarks, we obtain the following special case
of Conjecture E.

Conjecture F. Every snark has a DC.

The following theorem, which is the main result of this paper, shows that Conjecture F
is equivalent with the previous ones.

Theorem 3. Conjecture F is equivalent with Conjectures A, B, C, D and E.

The proof of Theorem 3 is postponed to Section 4.

As already noted, every cyclically 4-edge-connected cubic graph other than K, must be
triangle-free. Thus, the difference between Conjectures E and F consists in restricting to
graphs which do not contain a 4-cycle. For the proof of the equivalence of these conjectures
in Section 4 we first develop in Section 2 a refinement of the technique of contractible
subgraphs that was developed in [11] as a common generalization of the closure concept
[10] and Catlin’s collapsibility technique [3], and in Section 3 a technique that allows to
handle the (non)existence of a DC while replacing a subgraph of a graph by another one.

2 Weakly contractible graphs

In this section we introduce a refinement of the contractibility technique from [11] under
a special assumption which is automatically satisfied in cubic graphs. We basically follow
the terminology and notation of [11].

For a graph H and a subgraph F' C H, H|r denotes the graph obtained from H by
identifying the vertices of F' as a (new) vertex vg, and by replacing the created loops
by pendant edges (i.e. edges with one vertex of degree 1). Note that H|r may contain
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multiple edges and |E(H|p)| = |E(H)|. For a subset X C V(H) and a partition A
of X into subsets, E(A) denotes the set of all edges ajas (not necessarily in H) such
that a; and as are in the same element of A, and H* denotes the graph with vertex set
V(HA) = V(H) and edge set E(H*) = E(H) U E(A) (here the sets E(H) and E(A) are
considered to be disjoint, i.e. if e; = ajas € E(H) and e = ajas € E(A), then ey, ey are
parallel edges in H*).

Let F' be a graph and A C V(F). Then F' is said to be A-contractible, if for every
even subset X C A (i.e. with |X| even) and for every partition A of X into two-element
subsets, the graph F4 has a DCT containing all vertices of A and all edges of E(A). In
particular, the case X = () implies that an A-contractible graph has a DCT containing all
vertices of A.

If H is a graph and F' C H, then a vertex € V(F') is said to be a vertez of attachment
of F' in H if x has a neighbor in V(H) \ V(F'). The set of all vertices of attachment of F’
in H is denoted by Ag(F). Finally, domy,(H) denotes the maximum number of edges of
a graph H that are dominated by (i.e. have at least one vertex on) a closed trail in H.
Specifically, H has a DCT if and only if dom,,(H) = |E(H)].

The following theorem shows that a contraction of an Ay (F')-contractible subgraph
of a graph H does not affect the value of domy,(H).

Theorem 4 [11].  Let F' be a connected graph and let A C V(F). Then F is A-
contractible if and only if
dOIHtT<H) = dOIHtT(H|F)

for every graph H such that F' C H and Ag(F) = A.

Specifically, F' is A-contractible if and only if, for any H such that FF C H and
Ap(F) = A, H has a DCT if and only if H|r has a DCT (the “only if” part follows by
Theorem 4, the “if” part can be easily seen by the definition of A-contractibility).

Let F be a graph and let A C V(F'). The graph F' is said to be weakly A-contractible,
if for every nonempty even subset X C A and for every partition A of X into two-element
subsets, the graph F4 has a DCT containing all vertices of A and all edges of F(A).

Thus, in comparison with the contractibility concept as introduced in [11], we do not
include the case X = (). This means that we do not require that a weakly A-contractible
graph has a DCT containing all vertices of A.

Clearly, every A-contractible graph is also weakly A-contractible. It is easy to see that
if ' is weakly A-contractible and |A| > 3, then dp(z) > 2 for every z € A.

Examples. 1. The graphs in Figure 1 are examples of graphs that are weakly A-
contractible but not A-contractible (vertices of the set A are double-circled).

2. The triangle Cj5 is A-contractible for any subset A of its vertex set.

3. Let C be a cycle of length £ > 4, let z,y € V(C) be nonadjacent and set A = V(C),
X = {x,y} and A = {{x,y}}. Then there is no DCT in C containing the edge zy € C4
and all vertices of A. Hence no cycle C of length at least 4 is weakly V' (C')-contractible.



Figure 1

If H is a graph and F C H, then H_p denotes the graph with vertex set V(H_p) =
V(H)\ (V(F)\ Ag(F)) and with edge set F(H_p) = E(H)\ E(F) (equivalently, H_F is
the graph determined by the edge set E(H) \ E(F)).

Our next theorem shows that, in a special situation, weak contractibility is sufficient
to obtain the equivalence of Theorem 4.

Theorem 5.  Let F' be a graph and let A C V(F), |A| > 2. Then F is weakly
A-contractible if and only if

domy,.(H) = domy,(H|F)

for every graph H such that F C H, Ag(F) = A, dy_,(a) = 1 for every a € A, and
|[V(K) N A| > 2 for at least one component K of H .

Proof. The proof of Theorem 5 basically follows the proof of Theorem 2.1 of [11].

Let F' be a graph and let H be a graph satisfying the assumptions of the theorem.
Then every closed trail 7" in H corresponds to a closed trail in H|r, dominating at least
as many edges as 7. Hence immediately domy,(H) < domy,(H|p).

Suppose that F is weakly A-contractible and let 7" be a closed trail in H|g such that
T" dominates domy,(H|r) edges and, subject to this condition, 7" has maximum length.
If vp ¢ V(T"), then T is also a closed trail in H, implying domy,(H|r) < domy,(H), as
requested. Hence we can suppose vp € V(T7).

If 77 is nontrivial, i.e. contains an edge, then the edges of 7" determine in H a system
of trails P = {Py,..., P}, k > 1, such that every P, € P has endvertices in A (note that
all trails in P are open since dy_,(a) =1 for all a € A). Since dy_,(a) =1 for all a € A,
every z € A is an endvertex of at most one trail from P, and we set X = {z € Ay(F)| z
is an endvertex of some P; € P} and A = {A4,..., A}, where A; is the (two-element)
set of endvertices of P, 72 =1,...,k.

If 7" is trivial (i.e., a one-vertex trail), then we consider a component K of H_p for
which |[V(K) N Ag(F)| > 2. Let x1,22 € V(K) N Ag(F). If V(K) \ {z1,22} # 0 then,
since K is connected, K contains a path of length at least 2 with end vertices x, x5, but
then we have a contradiction with the maximality of 7”. Hence V(K) = {x;,z2} and
E(K) = {z123}, and we set P, = z129, P = {P1}, X = {z1,22} and A = {{z1,22}}.
Note that in both cases the set X is nonempty.
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By the weak A-contractibility of F, FA has a DCT @, containing all vertices of A
and all edges of E(A). The trail () determines in F' a system of trails @1, ..., Q such
that every @); has its two endvertices in two different elements of A. Now, the trails Q;

together with the system P form a closed trail in H, dominating at least as many edges
as T". Hence domy,(H|r) < domy,(H), implying domy, (H|r) = domy,.(H).

Next suppose that F' is not weakly A-contractible (possibly even disconnected). Then,
for some nonempty X C A and a partition A of X into two-element sets, F* has no DCT
containing all vertices of A and all edges of E(A). Let A= {{«},27},...,{z}, 2}}}, and
construct a graph H with F' C H by replacing the edges of E(A) by k vertex disjoint
x;, x/-paths P; of length at least 3, ¢ = 1,..., k, and by attaching a pendant edge to every
vertex in A\ X. Since X # (), at least one component K of H_p is a path with end
vertices in A, implying |V (K) N A| > 2. Since FA has no DCT containing all vertices of
A and all edges of E(A), H has no DCT. However, clearly H|r has a DCT and we have
domy,(H) < domy,.(H|r). [ |

In the special case of cubic graphs, we have the following corollary.

Corollary 6. Let F be a graph with 6(F) = 2, A(F) < 3 and |A| > 2, where
A={z € V(F) |dp(x) =2}. Then F is weakly A-contractible if and only if

domy, (H) = domy,(H|F)

for every cubic graph H such that FF C H, Ag(F) = A, and |V (K) N A| > 2 for at least
one component K of H_p.

Proof. Clearly dy_, = 1 for every a € A, since H is cubic. If F' is weakly A-
contractible, then domy,.(H) = domy,.(H|r) immediately by Theorem 5. For the rest of
the proof, it is sufficient to modify the last part of the proof of Theorem 5 such that the
constructed graph H is cubic. To achieve this, it is sufficient to use a copy of the graph
in Figure 2(a) instead of each of the paths P;, and a copy of the graph in Figure 2(b)
instead of each of the pendant edges attached to the vertices a; € A\ X. Then there
is a component K of H_p with |V(K) N A| > 2 since X is nonempty. The graph H|pg
has a closed trail dominating all edges except for the edges different from e; in the copies

attached to the vertices in A\ X, while in H there is no such closed trail. |
!
e .
J aj
xl
() (b)
Figure 2

We say that a subgraph F' C H is a weakly contractible subgraph of H if F'is weakly
Apg(F)-contractible. We then have the following corollary.
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Corollary 7. Let H be a cubic graph and let F' be a weakly contractible subgraph of
H with §(F) = 2. Then H has a DC if and only if H|p has a DCT.

Proof. First note that in a cubic graph every closed trail is a cycle and that a cubic
graph with a DC must be essentially 2-edge-connected. Since H is cubic and §(F) = 2,
Ay(F) = {z € V(F) | dp(z) = 2} and the weak contractibility assumption implies F
is connected. If every component of H_p contains one vertex from Ag(F'), then clearly
neither H nor H|r is essentially 2-edge-connected (since H is cubic) and hence neither H
nor H|r has a DCT. The rest of the proof follows from Corollary 6. [ ]

Example. Let H be the graph obtained from three vertex—disjoint copies F, Fy, F3 of
the graph F; from Figure 2(a) by adding edges x|z}, x5, xhal, ozf, oixf, xiz. Then
H is cubic, F; C H is weakly contractible, H|r has a DCT, but H has no DC. This
example shows that the assumption 0(F') = 2 in Corollaries 6 and 7 cannot be omitted.

3 Replacement of a subgraph

In this section we develop a technique to replace certain subgraphs by others without
affecting the (non)existence of a DCT.

Let G be a graph and let F' C GG be a subgraph of G. Let F’ be a graph such that
V(F')NV(G) =0, let A" C V(F’) be such that |A'| = |Ag(F)| and let ¢ : Ag(F) — A’ be
a bijection. Let H be the graph obtained from G_g and F’ by identifying each x € Ag(F)
with its image ¢(x) € A’. We say that the graph H is obtained by replacement (in G) of
F by F' modulo ¢ and denote H = G[F % F'|.

Note that if H = G[F % F’] then also clearly G = H[F"’ L F.

Let F be a graph and let A = {ay,...,a;} C V(F). Let A be a set with ANV (F) =),
/4| = |A|, and set A = {@,...,a}. Then F" denotes the graph with vertex set V(F") =
V(F)UA and with edge set E(F") = E(F) U {aa| i = 1,...,k} (ie., F" is obtained
from F' by attaching a pendant edge to every vertex of A).

The following observation shows that, under certain conditions, the replacement in a
graph G of a weakly contractible subgraph by another one affects neither the existence
nor the nonexistence of a DCT in G.

Proposition 8.  Let G be a graph with 6(G) > 1 and let F' C G be a weakly contractible
subgraph of G such that |E(F)| > 1, dg_,.(x) =1 for every x € Ag(F) and G # Fhe),
Let F', |E(F')| > 1, be a weakly A’-contractible graph for an A" C V(F'), and let
¢ : Aa(F) — A’ be a bijection. Then G has a DCT if and only if G[F % F'] has a DCT.



Proof. Set H = G[F % F']. For |Ag(F)| = 0 the assumptions G 2 F" ¢ and
d(G) > 1 imply that G is disconnected and neither G nor H has a DCT. If |Aq(F)| =1
orif |[Ag(F)| > 2 and |V(K)NAg(F)| =1 for every component K of G_p, then neither G

nor H can have a DCT since |E(F)| > 1, |E(F')| > 1, dg_,(x) = 1 for every x € Ag(F)

and G # o Thus, we can assume that |Ag(F)| > 2 and there is a component K of

G_r such that |V(K) N Ag(F)| > 2. Then, by Theorem 5, G has a DCT if and only if
G|r has a DCT. Similarly, H has a DCT if and only if H|z has a DCT, but the graphs
G|r and H|p are, up to the number of pendant edges at vg (vgs), isomorphic. [ |

In the special case of cubic graphs, we obtain the following consequence.

Corollary 9. Let GG be a cubic graph and let F' C G be a weakly contractible subgraph
of G with 6(F) = 2. Let I’ be a graph with 6(F') = 2 and A(F') < 3, let A = {x €
V(F")| dp(xz) = 2} and suppose that F' is weakly A’-contractible. Let ¢ : Ag(F) — A’
be a bijection. Then the graph H = G[F % F'] is cubic and G has a DC'if and only if H
has a DC.

Proof.  Clearly Ag(F) = {z € V(F)| dp(z) = 2} and since G is cubic, we have
de_p(z) =1for every z € Ag(F) and G # F'") Since ¢ is a bijection, H is cubic. By
Proposition 8, G has a DCT if and only if H has a DCT, but in cubic graphs every DCT
is a DC. [ |

Now we consider a similar question if F' and/or F’ are not contractible. We restrict
our observations to cubic graphs.

A connected graph F' without multiple edges with A(F) < 3 will be called a cubic
fragment. For any cubic fragment F and i = 1,2 we set A;(F) = {z € V(F)| dp(z) = i}
and A(F) = A;(F)U As(F) (note that if F* C H, F is connected and H is cubic, then F'
is a cubic fragment and Ay (F) = A(F)). A cubic fragment F is said to be essential if
\V(F)\ Ai1(F)| > 2. It is easy to observe that if F' is an essential cubic fragment, the set
V(F)\ Ai(F) induces (in F') a connected subgraph with at least one edge.

For a cubic fragment F' we now introduce the concept of an F-linkage. An F-linkage
will be allowed to contain loops. A loop on a vertex v is considered as an edge joining v
to itself, and is denoted by an element vv of the edge set. Edges of an F-linkage that are
not loops will be referred to as open edges.

Let F be a cubic fragment and let B be a graph with V/(B) C A(F), E(B)NE(F) = 0,
and with components By, ..., By. We say that B is an F-linkage, if E(B) contains at
least one open edge and, for any i =1,...,k,

(1) every B; is a path (of length at least one) or a loop,

(73) if B; is a path of length at least two, then all interior vertices of B; are in A;(F),
(i73) if B; is a loop at a vertex x, then x € Ay(F).

Let F be a cubic fragment and let B be an F-linkage. Then FP denotes the graph
with vertex set V(F?) = V(F) and edge set E(F?) = E(F)U E(B). Note that E(B)
and E(F) are assumed to be disjoint, i.e. if hy = z129 € E(F) and hy = 2129 € E(B),
then hy, hy are parallel edges of the graph 2.
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Let Fy, F5 be cubic fragments with |A(Fy)| = |A(Fy)| and let ¢ @ A(Fy) — A(F,) be
a bijection. For any Fi-linkage B, ¢(B) denotes the graph with vertex set V(p(B)) =
{o(z)| = € V(B)} and edge set E(p(B)) = {p(x)p(y)| zy € E(B)} (note that the sets
E(F,) and E(p(B)) are again considered to be disjoint, and we admit x = y in which
case p(z)p(x) is a loop at p(z)). Note that ¢(B) is an Fy-linkage.

Let Fy, F5 be cubic fragments with |A(F})| = |A(Fy)| and let ¢ @ A(Fy) — A(F,) be
a bijection. We say that ¢ is a compatible mapping if
(1) o(Ai(F1)) = Ai(F2), i = 1,2,
(i) if B is an Fj-linkage such that F}” has a DC containing all open edges of B, then
FQ‘p(B) has a DC containing all open edges of ¢(B).
For a compatible mapping ¢ : A(F}) — A(Fy) we will simply write ¢ : F} — F.

Let Fy, F5» be cubic fragments and let ¢ : A(F}) — A(F,) be a bijection such that
©(A;(F1)) = Ai(Fy), i = 1,2. Tt is easy to observe that if Fy is weakly A(Fy)-contractible
then ¢ is compatible, and if moreover F} is weakly A(F})-contractible then both ¢ and
o~ ! are compatible (note that B cannot contain a path of length at least 2 in this case
— this is clear for |A(F;)| < 2, and for |A(F;)| > 3 this follows from the fact that weak

A(F;)-contractibility of F; then implies A(F;) = As(F})).

The following example shows that the compatibility of a mapping ¢ does not imply
o~ ! is compatible if the Fj’s are not weakly contractible.

Example. Let Fj, Fy be the graphs in Figure 3 and let ¢ : A(F)) — A(F,) be the
mapping that maps ajl on a?, j=1,2,3,4. By a straightforward check of all possible

1 1 2 2
aq . 5 as u v as
Fy Fy
Yy w z
al al a? a?
4 3 4 1

Figure 3

(B)

Fy-linkages B and the corresponding DC’s in F'Z and in Fy""’, we easily see that there

are, up to symmetry, the following possibilities.

E(B) DCin Ff  DCin Ff¥
alaj alalyzal ajadwuvzal
ata} not existing  not existing
atal,alal atataiyral  aldiaiwuvzal
atal,alal not existing  afalaiuwzal
alad, adal alal ajalalalyral aiaididiwuvzal
alay,ajal, alal alajalalzal  aldidiaduwza?
ala}, adal atalyaialral  aladwuaiadvza?
atay,alal not existing  afajuvaiaiwza?



We conclude that ¢ : A(F;) — A(Fy) is a compatible mapping, but there is no compatible
mapping of A(F,) onto A(F}). Note that this mapping ¢ will play an important role in
the proof of our main result in Section 4.

The following result shows that the replacement of a subgraph of a cubic graph modulo
a compatible mapping does not affect the existence of a DC.

Theorem 10. Let G be a cubic graph and let C' be a DC in G. Let F' C G be an
essential cubic fragment such that G—F' is not edgeless, and let F' be a cubic fragment such
that V(F') N V(G) = 0 and there is a compatible mapping ¢ : F'— F'. Then the graph
G' = G[F % F') is a cubic graph having a DC C" such that E(C)\ E(F) = E(C")\ E(F").

(Note that if both ¢ and ¢! are compatible and both F' and F”’ are essential, then G
has a DC if and only if G’ = G[F % F'] has a DC.)

Proof. By the compatibility of ¢, A1(F’) = (A1 (F)) and A2(F") = p(Aa(F)), hence
G’ is cubic. Let C' be a DC in G. We show that G" has a DC C" with E(C) \ E(F) =
E(C")\ E(F").

We first observe that E(C)NE(F) # (). Since F is essential, there is an edge zy € E(F)
with dp(z) > 2 and dp(y) > 2. Then one of x,y (say, =) is on C. Since dp(z) > 2, x has
a neighbor z; in F, xy # y. Then, since dg(x) = 3, the edge xy or zz, is in E(C)NE(F).

Let Cr and C_p denote the subgraph of C' induced by the edge set E(C) N E(F') and
E(C)N E(G_F), respectively. Since E(C)N E(F) # 0 and G — F is not edgeless, C_r is
a nonempty system of paths. Let Py, ..., P, be the components of C'_r. Then:

e the endvertices of every P; are in A(F),
e the interior vertices of every P; are in A;(F') or in V(G) \ V(F),
i=1,...,k.

We define an F-linkage B as follows:

(i) for every P;, let PP be the path obtained from P, by replacing every maximal
subpath of P; with all interior vertices in V(G) \ V(F) by a single edge (with both
vertices in A(F)),

(17) for every vertex x € A(F)\ V(C_p) which is on Cp (note that such a vertex x
must be in As(F')), let e, be a loop at z,

(iii) B is the graph with components {PP|i = 1,...,k} U {e.]z € As(F)\ V(C_p) N
V(C)}.

It is immediate to observe that the graph F'” has a DC C® containing all open edges
of B. By the compatibility of ¢, the graph (F")?®) has a DC C'B containing all open
edges of the graph ¢(B).

Let C denote the subgraph of C'P induced by the edge set E(C'?) N E(F’). Then
O is a system of paths, and the edges in E(C} ) U E(C_p) determine a cycle C” in
G' = G[F % F'] with E(C)\ E(F) = E(C")\ E(F'). Note that, by the construction,
V(C)NA(F) C V(C") N A(F") (this is clear for vertices x with d¢_,(z) > 1, and for
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vertices z with dc_,.(x) = 0 this follows from the fact that both CP and C'"? dominate
all loops in B and in ¢(B), respectively).

It remains to show that C" is a DC in G’. Thus, let zy € E(G").

If 2,y e V(G)\V(F') =V(G)\ V(F), then z or y is on C_p, implying = or y is on
C’ since C_p C (.

If 2,y € V(F')\ A(F"), then x or y is on C, implying z or y is on C” since C}, C C".

Up to symmetry, it remains to consider the case z € A(F') = p(A(F)). If x € V(C),
then also = € V/(C") since V(C) N A(F) C V(C") N A(F"), as observed above. Hence we
can suppose that x ¢ V(C'), implying y € V(C). If y € A(F"), then similarly y € V(C")
and we are done, hence y ¢ A(F"). Then either y € V(F')\ A(F"), or y € V(G') \ V(F").
But then, in the first case y is on C4, since €’ is dominating in (F)#®), and in the second
case y is on C_p since C' is dominating in G. In either case this implies y € V(C’). ®

The following result shows that the existence of a compatible mapping is not affected
by a replacement of a subgraph by another one modulo a compatible mapping.

Proposition 11.  Let X, F' be essential cubic fragments such that there is a compatible
mapping ¢ : X — F. Let Fy C F be an essential cubic fragment, and let Fy be a cubic
fragment such that V(F) NV (Fy) = () and there is a compatible mapping ¢ : F| — F.
Let F' = F[Fy % F,). Then there is a compatible mapping ' : X — F'.

Proof. For any z € A(X) set

ey~ { V) e e A\ AR)

o(b(x)) i € v AF) N A(R)).

Then ¢’ : A(X) — A(F') is a bijection, and ¢ : A;(X) — A;(F’), i = 1,2, by the
compatibility of ¢ and ¢. Let B be an X-linkage such that X? has a DC containing all
open edges of B. By the compatibility of 1, the graph F¥®) has a DC C' containing all
open edges of ¢)(B). We need to show that (F")¥(®) has a DC containing all open edges
of ¢¥/(B). We will construct a cubic graph H such that I’ C H, H has a DC that coincides
with C' on F', and the structure of H — F' implies that an application of Theorem 10 to
H yields the required DC in (F")¥'(5),

Let By, ..., By be the components of ¢)(B), and choose the notation such that
e By,....,B, (p > 1) are paths, V(B;) = {x?,...,xﬁj} (i.e. Bj is of length ¢;),
J=1....p

e if none of By,..., By is a loop, then ¢ = 0, otherwise Bp,1,..., B,y are loops,
V(Bpsj) ={apssh g =1,....6

o if A(F}) \ V(¥(B)) = 0, then f = 0, otherwise A(F) \ V(¢(B)) = {zpses1s---»
Lp+l+f -

11
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Thus, we have k = p + ¢ and V (/(B)) = U2E{(V(B;)).
Let Q;, I; (s > 2), S; and Tj be the graphs shown in Figure 4. We construct a cubic
graph H containing I’ by the following construction:

e take the graph F' with the labeling of vertices of A(F') defined above;

e for each B; with 1 < j < p, ¢; = 1, take one copy of @); and for i = 0,1 identify
zh = ¢} if 2 € A1(F) or add the edge z’q} if 2} € Ay(F), respectively,

e for each B; with 1 <j <p, {; > 1, take one copy of R} for s = {; and
— for i« = 0 and ¢ = ¢; identify xz = ré if xé € A;(F) or add the edge xérﬁ if
zh € Ay(F), respectively,
— for 1 <i < ¢; — 1 identify } = r;

e for each B; with p+1 < j <p-+/{ (if £ > 0) take one copy of S;, add the edge z;s;,
and if £ > 2, then for j > p + 2 add the edge v;_u;;

e for each z; withp+¢+1<j<p+ ¢+ f (if f > 0) do the following:

— if ; € Ai(F), take one copy of S;, identify z; = s; and if f > 2, then for
Jj > p+ €+ 2 add the edge vj_qu; (if z;_1 € Ay (F)), or the edge w;_ju; (if
xj_1 € As(F)), respectively;

— if x; € Ay(F), take one copy of T}, identify z; = ¢; and if f > 2, then for
Jj > p+ L€+ 2 add the edge v,_yw; (if z;_; € A1(F)), or the edge w;_jw; (if
xj_1 € Ay(F)), respectively;

— if xpe01 € As(F), then relabel wy e a8 upyorr and if x40 ¢ € Ay(F), then
relabel wp, 41 as vpye4y;

e if { # 0, then

— for £; = 1 remove the edge ¢Ya; and add the edges ¢{u,1 and av, 4,

— for 1 > 1 remove the edge r¥r] and add the edges rYu, 1 and v, ;
o if f £ 0, then

— for £, = 1 remove the edge b;q; and add the edges byuy 11 and ¢ vy ey,

— for ¢; > 1 remove the edge r* 7' and add the edges rfl_luergH and 7! Uptotf-

12



Then H is a cubic graph, F' C H, Ay(F) = A(F), and it is straightforward to check
that H has a DC C* such that E(C*)N E(F) = E(C)N E(F).

Let CH, denote the subgraph of C* induced by the edge set F(C*)N E(H_r). Then
the structure of the graphs Q);, R;, S; and T; implies the following properties of cH..

e if 1 <j<pandi=0ori=4{, then den (23) =1,

o iflgjgpandl§i§€j—1,thendch(a:§-):2,
o if (>0andp+1<j<p+/ then deow (v;) = 0 and x; has no neighbor on C7,

e if f>0andp+/l+1<j<p+/{+f, then dch(xj) = 0 and all neighbors of z; in
H_p are on CH.

Set H' = H[F, % F;]. By the compatibility of ¢ and by Theorem 10, H' has a DC C*’
such that E(CH')\ E(F,) = E(C")\ E(F,). Specifically, I’ ¢ H' and E(C"')\ E(F") =
E(CM\ E(F). Let CE and C"}, denote the subgraph of C#" induced by E(C*")NE(F")
and E(CHYN E(H' 1), respectively. Then C*#,, = C*, and from the above properties of
CH.. we obtain the following properties of C'E,:

e if 1 <j<pandi=0ori=/{, then dow(z}) =1,
F/

o ifl<j<pand1<i</{;—1,then d,u (a:;) = 0 and all edges of F’ with at least
F/

one vertex in Np(x%) have at least one vertex on cH'
o if{>0andp+1<j5<p+/ then d.w(z;) = 2,
F/

oif f>0and p+(¢+1<j<p+/{+f, then either d u(x;) =2, or dou (x;) =0
F! yal

and all neighbors of x; in F’ are on CF, .

This implies that O together with the open edges of ¢/(B) determines the required
DC in (F')¥'(B) containing all open edges of /(B). u

For a cubic fragment F with A(F) = Ay(F) we will simply write 7' = F. If Fy, F

are cubic fragments with A(F;) = As(F;), i = 1,2 and ¢ : A(Fy) — A(F}) is a bijection,
then @ denotes the bijection @ : A(F}) — A(F3) defined by p(a) = p(a), a € A(F}).

In the proof of Proposition 14 we will also need the following statement showing that
the existence (or nonexistence) of a compatible mapping is not affected by adding pendant
edges to vertices of attachment.

Proposition 12.  Let Fy, F, be cubic fragments with |A(F})| = |A(F3y)| and A(F;) =
Ao(F;), i = 1,2, and let ¢ : A(Fy) — A(F2) be a bijection. Then ¢ is compatible if and
only if ¢ : A(Fy) — A(F3) is compatible.

13



Proof. Set A(Fy) = {ai,...,a;}. Suppose first that ¢ is compatible and let B be an F}-
linkage such that there is a DC C in (F})? containing all open edges of B. Since A(F}) =
A;(Fy), all components of B are paths. We define an Fi-linkage B as follows:

(i) aa; € E(B), i # j, if and only if B has a component which is an @;, a;-path,

(i1) asa; € E(B) if and only if a; € A(Fy) \ V(B).
(This means that vertices in A(F) corresponding to internal vertices of paths in B will

not be in V(B), and vertices corresponding to vertices not in V(B) will have loops in B).

Since C' dominates all edges of Fy (including the edges a;a; with @; ¢ V(B)), it is
straightforward to see that removing from C the edges of B and the pendant edges of
{aa;, 1 = 1,...,k} N E(C), and adding the open edges of B results in a DC C in FP,
containing all open edges of B. Using the compatibility of ¢ we obtain a DC in Fy (B)

containing all open edges of ¢(B), and adding the pendant edges and all edges of B(5)
yields a required DC in (F)?5).

Conversely, let @ : A(F) — A(Fy) be compatible and let B be an Fj-linkage. Since
A(Fy) = As(Fy), B contains no paths of length more than one. Suppose the notation is
chosen such that E@) = {a1aq, ..., a2 109, Q2p41G2p+1, - - - , A2prsQ2pis}, Where 2p 4+ £ <

k. Then we define B as the graph which has as components the path ajaspyiet1 ... aras
and (if p > 1) the edges ag;_1as;, i = 2,...,p. Rest of the proof is similar as above. [ |

4 Equivalence of Conjectures A, B, C, D, E, F

Before proving our main result, Theorem 3, we first prove several auxiliary statements
that describe the structure of potential counterexamples to Conjecture D.

Proposition 13. If Conjecture D is not true, then there is an essential cubic fragment
F such that
(i) [Ao(F)| = [A(F)] = 4,
(13) there is a cyclically 4-edge-connected cubic graph G such that F C G,
(#3i) there is no compatible mapping ¢ : Cy — F.

Proof. Let G be a counterexample to Conjecture D, i.e. a cyclically 4-edge-connected
cubic graph having no DC, let e = wv € E(G) and set F' = G — {u,v}. Then F is an
essential cubic fragment with |Ay(F)| = |A(F)| = 4. Let, to the contrary, ¢ : Cy — F

be a compatible mapping and set G’ = G[F L Cy4]. Then G’ is isomorphic to one
of the graphs in Figure 5, hence G’ has a DC. But then, by Theorem 10, the graph
G = G'[Cy % F] has a DC, a contradiction. u
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Figure 5

Proposition 14. Let F' be an essential cubic fragment such that
(i) |As(F)| = |A(F)| = 4,
(7i) there is a cyclically 4-edge-connected cubic graph G such that F C G,
(#4i) there is no compatible mapping ¢ : Cy — F,
(iv) subject to (i), (ii) and (iii), |V (F')| is minimal.
Then F' is essentially 3-edge-connected and contains no cycle of length 4.

Proof. Recall that a cubic graph is cyclically 4-edge-connected if and only if it is
essentially 4-edge-connected (see [5]).

We first show that F' is essentially 3-edge-connected. Suppose the contrary. By def-
inition, F' is connected. Denote A(F') = {ai,as,as,a4}, and let f; denote the edge in
E(G)\ E(F) incident with a;, i = 1,2,3,4. If F' has a cut edge e, then some nontrivial
(i.e. containing at least one edge) component of F' — e contains at most two vertices a;,
but then e together with the corresponding edges f; is an essential edge cut in G of size
at most 3, a contradiction. Hence F' has no cut edge. (Note that F' has also no cut vertex
since G is cubic.)

Thus, let R = {e1,e2} C E(F) be an essential edge cut of F, and let Fj, F, be
nontrivial components of F — R. Denote ¢; = bb? with b € V(F}), i,j = 1,2. If
\V(F1)NA(F)| = 1, then we set V(F1)NA(F) = {z} and observe that the edges e, e; and
the only edge of G_F incident to z form an essential edge cut of G of size 3, a contradiction.
We obtain a similar contradiction for |V (Fy) N A(F)| = 0, hence |V (Fy) N A(F)| > 2.
Symmetrically, |V (Fy) N A(F)| > 2, implying |V(Fy) N A(F)| = |V(Fy) N A(F)| = 2.
Thus, we can suppose the notation is chosen such that a1, as € V(F}) and as,aq € V(Fy).

If |V(F1)| > 4, then there is a compatible mapping ¢ : C4y — F} by the minimality of
F. Let C be a copy of Cy and set H = F[F} L C]. Then |V (H)| < |[V(F)| and, by the
minimality of F', there is a compatible mapping ¢ : Cy — H. By Proposition 11 (with
X :=Cy, F:=H, F, :=C and F, := F}), there is a compatible mapping ¢/ : Cy —
H[C % F\] = F, a contradiction. Hence |V (F})| < 4 and, symmetrically, |V (F)| < 4.

Now, since G is cyclically 4-edge-connected, either {a;,as} N {bi, 03} = 0, or (up to
symmetry), a; = b} and ay = b}. Hence F} is a single edge or a cycle of length 4.
Similarly, F5 is a single edge or a cycle of length 4. Thus, F' is isomorphic to one of the
graphs shown in Figure 6. However, it is straightforward to check that for each of these
graphs there is a compatible mapping ¢ : Cy — F, a contradiction. Thus, F' is essentially
3-edge-connected.

Next we show that

() F contains no subgraph F, F' # F, with |V (F)| > 4 and |Ay(F)| = |A(F)| = 4.
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Thus, let F be such a subgraph. By the minimality of F, there is a compatible mapping
¢ :Cy — F. Let C be a copy of Cy and set H = F[ﬁ L 5’] By the minimality of F',
there is a compatible mappmg ¢ : Cy — H. By Proposition 11 (with X : 04, =H,

Fy = C and F, = F) there is a compatible mapping ¢’ : Cy — H[C’ F] =F, a
contradiction. Hence there is no such F.

Finally, we show that F' contains no cycle of length 4. Let, to the contrary, Y C F' be a
copy of Cy (note that possibly V(Y)NA(F) # 0). Let F' be the graph obtained from F by
attaching a pendant edge to each vertex in A(F'), and let I} and F;, be the graphs shown
in Figure 3 (recall that we already know there is a compatible mapping ¢ : F} — Fy).
Let Y be the (only) subgraph of F such that Y C Y and Y is isomorphic to Fy, let T be

a copy of Iy and let ¢ : T — Y be a compatible mapping. Set F = FlY e T] (i.e.,
F=F [T %Y])), and let F' be the graph obtained from F’ by removing the 4 pendant
edges. Then F” is a cubic fragment with |A(F")| = |A2(F")| = 4.

We show that there is no compatible mapping ¢ : Cy — F’. Let, to the contrary,
Y : C4y — F’ be compatible. By adding pendant edges to A(Cy) and A(F') and by
Proposmon 12, there is a compatible mapping v : Cy — F. Thus, we have w C, — F
T C F and ¢ : T — Y. By Proposition 11, there is a compatible mapping 1/1 :Cy — F.
By removing the pendant edges and by Proposition 12 we obtain a compatible mapping
' Cy — F, a contradiction. Thus, there is no compatible mapping ¢ : Cy — F".

By the minimality of F', the graph F” (and hence also F/) cannot be a subgraph of
a cyclically 4-edge-connected cubic graph. Thus, there is an edge cut R’ of F' such that
|R'| < 3 and at least one component X’ of ' — R’ contains a cycle and has minimum
degree 2 (if such an R’ does not exist then, identifying the vertices of degree 1 of F
with vertices of a Cy, we get a cyclically 4-edge-connected cubic graph containing F/,

a contradiction). However, there is no such edge cut in F. Since F = FlY L T},
R contams the edge e = xzy € E(T) with dr(x) = dr(y) = 3 and some two edges fi,
fo € E(F)\E(T). Suppose the vertices of T are labeled such that A;(T) = {ay, az, as, as},
E(T) = {a1x, asx, azy, asy, xy} and ay, az,z € V(X’'). Then R" = {fi, fo, asy, a4y} is an
edge cut in F such that |R”| = 4 and X'+ e is a component of I — R”. Let ey (es, €3, e4)
denote the pendant edge of Y which corresponds to the edge a1z (asx, asy, ayy) € E(T),
respectively, in the mapping ¢. Then R = {fi, f2, €3, €4} is an edge cut of F such that the
component X of F' — R containing X" and Y has |V (X)| > 4 and |As(X)| = |A(X)| = 4.

By (%) (and since F' % Cjy, implying e;,es € E(F')), F' contains no such graph as a
proper subgraph, hence X = F. But then {ej,es} is an edge cut of F, contradicting the
fact that I is essentially 3-edge-connected. Hence F' contains no cycle of length 4. [ |
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Proposition 15. If Conjecture D is not true, then there is an essential cubic fragment
F' such that

(1) F contains no cycle of length 4,
11) there is a cyclically 4-edge-connected cubic grap such that F' C G,
1) there i lically 4-ed d cubi h G such that FF C G
227 2 = =4 an 1S Independent,
(iii) |As(F)| = [A(F)| = 4 and A(F) is independ
(iv) there is a compatible mapping ¢ : F' — Cj.

Proof. By Propositions 13 and 14, there is an essential cubic fragment H such that H
contains no cycle of length 4, |Ay(H)| = |A(H)| = 4, there is a cyclically 4-edge-connected
cubic graph G such that H C G, and there is no compatible mapping ¢ : Cy — H. Let
H be minimal with these properties. Since A(H) = Ay(H), by the nonexistence of a
compatible mapping ¢ : Cy — H, H is not weakly A(H)-contractible. Hence there
is a nonempty even set X C A(H) and a partition A of X into two-element subsets
such that H* has no DCT containing all vertices of A(H) and all edges of F(A). Set
A(H) = {ay,a9,a3,a4} and suppose the notation is chosen such that A = {{a;,as}} if
| X|=2or A= {{a1,as},{as,as}} if | X| = 4. Then the graph H? has no DC containing
all open edges of B for either E(B) = {ajas, azas, agas} or E(B) = {ajaz, azas}.

Let H, H' be two copies of H (with a corresponding labeling A(H') = {d}, a}, a4, a}}),
and let I be the cubic fragment obtained from H and H' by adding the edges a;a} and
asaly. Recall that H contains no cycle of length 4. Since H is essentially 3-edge-connected
by Proposition 14, the set {a1, as, a3, a4} (and hence also {a}, a}, ay, a}}) is independent.
Hence F' also contains no cycle of length 4, and the set A(F') = {as, a4, aj, a}} is indepen-
dent. It remains to prove that there is a compatible mapping ¢ : F' — Cj.

First we show that the graph F'® has no DC containing all open edges of B for
E(B) = {asas, agaq, atal}. To the contrary, let C' be such a DC. Then (E(C) N E(H)) U
{a1as} is a DC in HP containing all open edges of B for F(B) = {ajas,azaz, asa,}, and
(E(C)NE(H"))U{d,d),asal} is a DC in H'®' containing all open edges of B’ for E(B') =
{a}aly, ayaly}, which is not possible. Thus, there is no such DC in F'Z. Symmetrically, F'Z’
has no DC containing all open edges of B’ for E(B’) = {a4d}, aja)), asas}. Let Y be a copy
of Cy with vertices labeled bs, by, b, b such that bsby ¢ E(Y') and b5, ¢ E(Y). Then it
is straightforward to check that Y2” has a DC containing all open edges of B” for all Y-
linkages B” except for the cases E(B") = {bsbs, byby, b3} and E(B") = {b4b}, b, bsbs }.
Hence the mapping ¢ : A(F) — A(Y) that maps a; on b; and @, on b, i = 3,4, is a
compatible mapping. [ |

Note that we do not know any example of a cubic fragment with the properties given
in Proposition 15. Moreover, we believe that such a graph in fact does not exist.

Now we are ready to prove the main result of this paper, Theorem 3.

Proof of Theorem 3. Clearly, Conjecture E implies Conjecture F. By Theorem 2, it is
sufficient to show that Conjecture F implies Conjecture D. Thus, suppose Conjecture D
is not true, and let F' be an essential cubic fragment as given by Proposition 15. Let
G be a counterexample to Conjecture D, i.e. a cyclically 4-edge-connected cubic graph
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without a DC. For any cycle C' of length 4 in G, choose a compatible mapping of I’ on
C, and let G’ be the graph obtained by recursively replacing every cycle of length 4 by
a copy of F'. Then G’ is a cubic graph of girth ¢g(G') > 5 and, by Theorem 10, G’ has
no DC. Moreover, GG’ is cyclically 4-edge-connected since any cycle-separating edge cut in
G’ of size at most three would imply the existence of such an edge cut in G. If G’ is not
3-edge-colorable, GG’ is a snark and we are done. Otherwise, we use the following fact and
construction by Kochol [7].

Claim [7]. If a cubic graph G contains the graph H of Figure 7 as an induced subgraph,
then G is not 3-edge-colorable.

o (P . @)
A A

(o

H

U2
Figure 7

We use the claim as follows. Let zy € E(G'), let o/, 2" (v, ") be the neighbors of
x (of y) different from y (z), respectively, and let G%, i = 1,2,3, be three copies of the
graph G’ — z — y (where z}, 27, y., y! are the copies of 2/, 2", ¢/, v in G}), i = 1,2, 3.
Then the graph G obtained from G, G%, G% and H by adding the edges | vs, T{04, Yy T3,
ylah, yoak, yhah, yhvr and yhvy is a cyclically 4-edge-connected graph of girth g(G) > 5.
By the claim, G is not 3-edge-colorable. It remains to show that G has no DC.

Let, to the contrary, C' be a DC in G. Then it is easy to check that for some i €
{1,2,3}, the intersection of C' with G} is either a path with one end in {z},z/} and

the second in {y.,y!}, or two such paths. But, in both cases, the path(s) can be easily
extended to a DC in GG’, a contradiction. [ |

5 Concluding remarks

1. Note that our proof of the equivalence of Conjecture F with Conjectures A — E is
based on properties (compatible mappings) that are specific for the Cy. This means that
our proof cannot be directly extended to obtain higher girth restrictions.

2. We pose the following conjecture and show it is equivalent with Conjectures A — F.

Conjecture G. FEvery cyclically 4-edge-connected cubic graph contains a weakly con-
tractible subgraph F with §(F) = 2.

Theorem 16. Conjecture G is equivalent with Conjectures A, B, C, D, E and F.
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Proof. We first show that Conjecture G implies Conjecture D. Suppose Conjecture G
is true and let G be a minimum counterexample to Conjecture D. Hence G has no DC. Let
F C G be a weakly contractible subgraph of G with §(F) = 2 and set A = Ag(F'). Note
that A # ) since 6(F) = 2. By Corollary 7, the graph G|r has no DCT. If |A| < 3, then
every edge in G_p has at least one vertex in A since G is essentially 4-edge-connected.
But then G| has a (trivial) DCT, a contradiction. Hence |A| > 4.

We use the following operation (see [5]). Let H be a graph, let v € V(H) be of degree
d=dy(v) >4, and let x4, ..., x4 be an ordering of the neighbors of v (allowing repetition
in case of multiple edges). Let H' be the graph obtained by adding edges x;y;, i = 1, ... ,d,
to the disjoint union of the graph H — v and the cycle y1y2 ... yqy:. Then H’ is said to
be an inflation of H at v. The following fact was proved in [5].

Claim [5]. Let H be an essentially 4-edge-connected graph of minimum degree 6(G) > 3
and let v € V(H) be of degree d(v) > 4. Then some inflation of H at v is essentially
4-edge-connected.

Now let G’ be an essentially 4-edge-connected inflation at vg of the graph obtained from
G|F by deleting its pendant edges. Then G’ is a cubic graph having no DC (since otherwise
G|r would have a DCT). Since no cycle of length ¢ > 4 is weakly contractible, F' is not
a cycle, and since §(F) = 2, we have |Ag(F)| < |E(F)|. But then |E(G")| < |E(G)],
contradicting the minimality of G.

For the rest of the proof, it is sufficient to show that Conjecture D implies Conjec-
ture G. Indeed, if C'is a dominating cycle in G, e = uwv € F(C) and A = {u,v}, then the
graph F' with V(F) = V(G) and E(F) = E(G) \ {e} is a weakly A-contractible subgraph
of G. -

It should be noted here that the last part of the proof of Theorem 16 is based on
a construction with |A| = 2, which forces G — F' be empty (G_p is a one edge graph)
since GG is cubic and cyclically 4-edge-connected. It is straightforward to observe that
the following stronger statement implies Conjectures A — G. However, we do not know
whether these statements are equivalent.

Conjecture H. Every cyclically 4-edge-connected cubic graph G contains a weakly
contractible subgraph F with |Ag(F)| > 4.
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