
Forbidden Subgraphs that Imply2-FactorsJ. R. FaudreeDepartment of Mathematics and Computer ScienceUniversity of Alaska at FairbanksFairbanks, AK, USAR. J. FaudreeDepartment of Mathematical SciencesUniversity of MemphisMemphis, TN, USA
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1 IntroductionWe will deal only with �nite graphs without loops or multiple edges. Notation will bestandard, and we will generally follow the notation of Chartrand and Lesniak in [CL96]. Thedegree of a vertex v in a graph G will be denoted by d(v), and the minimum and maximumdegree of vertices in G will be denoted by Æ(G) and �(G) respectively. The independencenumber of G will be denoted by �(G), the connectivity by �(G), and the clique number by!(G).Given a graph F , a graph G is said to be F -free if there is no induced subgraph ofG that is isomorphic to F . The graph F is generally called a forbidden subgraph of G.In the case of forbidden pairs of graphs, say F and H, we will simply say the graph isFH-free, as opposed to fF;Hg-free. Forbidden singletons and forbidden pairs of connectedgraphs that imply that a 2-connected graph is hamiltonian have been characterized. Also,similar characterizations have been given for other hamiltonian properties such as traceable,pancyclic, cycle extendable, etc. A collection of forbidden graphs used in results of this typeare pictured in Figure 1. The graph obtained from a triangle by attaching disjoint paths oflength i, j, and k respectively to the 3 vertices of the triangle will be denoted by N(i; j; k).These graphs are generalized nets, and in particular, Zi = N(i; 0; 0), B = N(1; 1; 0), andN = N(1; 1; 1). If i; j � 0, then the graphs N(i; j; 0) are the generalized bulls and will bedenoted by just B(i; j).The following result, which extends the results of Bedrossian in [Be91], gives all forbiddensingletons and forbidden pairs that imply hamiltonicity in 2-connected graphs of order atleast 10. A survey of results of this kind for other hamiltonian type properties can be foundin [F96], and a more general survey on claw-free graphs can be found in [FFR97].Theorem 1 (Faudree, Gould [FG97]) The only connected forbidden subgraph F thatimplies a 2-connected graph G is hamiltonian is P3. Let X and Y be connected graphs withX;Y 6� P3, and let G be a 2-connected graph of order n � 10. Then, G being XY -free impliesthat G is hamiltonian if, and only if, up to the order of the pairs, X = C and Y is a subgraphof either P6; N;W , or Z3. 2
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The characterization for 2-factors corresponding to Theorem 1 for hamiltonian cycles isgiven by the following result, which is the main result of this paper.Theorem 2 The only connected forbidden subgraph F that implies a 2-connected graph Ghas a 2-factor is P3. Let X and Y be connected graphs with X;Y 6� P3, and let G be a2-connected graph of order n � 10. Then, G being XY -free implies that G has a 2-factor ifand only if, up to the order of the pairs, X = C and Y is a subgraph of either P7; Z4; B(4; 1),or N(3; 1; 1), or X = K1;4 and Y = P4.There are 7 additional pairs of forbidden subgraphs in the characterization for 2-factorsnot present for hamiltonian cycles; those involving the claw, namely CP7, CZ4, CB(3; 1),CB(4; 1), CN(2; 1; 1), and CN(3; 1; 1), as well as the pair K1;4P4. Of course, the graphsP7 and Z4 are subgraphs of B(4; 1), so there are only two new maximal forbidden sub-graphs in Theorem 2, namely N(3; 1; 1) and B(4; 1). Three of these forbidden pairs, namelyCN(3; 1; 1); CB(4; 1), and K1;4P4, do not imply the existence of a 2-factor for all graphs, inparticular for graphs of order 9 or less. Hence, there are only four possible additional pairs of3



forbidden graphs implying the existence of a 2-factor when applied to all graphs. Note thatthe 2-connected condition is necessary. Neither a path Pn nor the graph Gn obtained from acomplete graph by attaching an edge has a 2-factor since some vertices of the graph are noton cycles. However, all of the forbidden pair conditions in Theorem 2 are satis�ed by eitherPn or Gn.As a consequence of the proof of Theorem 2, there also results a complete characterizationof all connected forbidden graphs and connected forbidden pairs of graphs that imply theexistence of a 2-factors for all 2-connected graphs, not just 2-connected graphs of order atleast 10.Corollary 1 A connected forbidden subgraph F implies a 2-connected graph G has a 2-factorif and only if F = P3. Let X and Y be connected graphs with X;Y 6� P3, and let G be a2-connected graph of order n. Then, G being XY -free implies that G has a 2-factor if, andonly if, up to the order of the pairs, X = C and Y is a subgraph of either P7; Z4; B(3; 1) orN(2; 1; 1).Theorem 2 will be proved in the next section.2 PROOFSThe proof of Theorem 2 will be broken into several results. We begin by proving that theconditions of Theorem 2 are necessary for forbidden subgraphs to imply a 2-factor in a 2-connected graph.Proof: First note that none of the graphs G1; G2; G3; G4; G5; G6, and G7 in Figure 2 havea 2-factor, and that neither G5 nor G6 have an induced claw. Any collection of forbiddensubgraphs that imply the existence of a 2-factor must have at least one of the subgraphs inthe collection as an induced subgraph of each Gi, (1 � i � 7).Let H be a connected graph such that G being H-free implies that G has a 2-factor.Thus, H must be a subgraph of each of the graphs G1; G3, and G5 in Figure 2. However,4



since G5 has no induced claw C, a path is the only graph common to G1 and G5. However,the longest induced path in G3 is P3. Hence, H must be a subgraph of P3, and so H = P3.Let X and Y be a pair of connected graphs (X and Y 6= P3) such that G being XY -freeimplies that G has a 2-factor. We will �rst show that either X or Y must be C or K1;4.Assume that this is not true. With no loss of generality we can assume that X is a subgraphof G1. This implies that either X = C, or X contains an induced path P4. Since both G2and G3 do not have induced P4's, the graph Y must be an induced subgraph of both G2 andG3. Being a subgraph of G3 implies that Y must be a complete bipartite graph, but the onlycomplete bipartite subgraph of G2 is a star. Thus, Y is a subgraph of K1;4. This veri�es theclaim, so we can assume that X = C or K1;4.If X = K1;4, then Y must be an induced subgraph of G1, G5, and G7, since none of thesegraphs contains a K1;4. However, the only induced graph common to these graphs is a path,and the longest induced path is a P4. Thus, if X = K1;4, then Y = P4. If X = C, then Ymust be an induced subgraph of G5, and so Y is either a path or a N(i; j; k) for appropriatei; j, and k. Also, Y must be a subgraph of G6, since it is claw-free. It is straightforwardto check that the longest induced path in G6 is a P7, the largest induced Zi is a Z4, themaximum generalized bull is a N(4; 1; 0), and the maximum generalized net is a N(3; 1; 1).This completes the proof. 2We will next show the forbidden pairs in Theorem 2 imply the existence of a 2-factorin a 2-connected graph. We will start with the pair K1;4P4. Note that for n � 9 the2-connected graph K2 + (K2 [K2 [Kn�6) has no hamiltonian cycle, but it does have a 2-factor. Also, observe that the graph K2+(3K2) is 2-connected, does not have a 2-factor, andit is a K1;4P4-free graph. Also, this graph has subgraphs of order 5; 6, and 7 with the sameproperties. However, the following theorem implies that if G is a 2-connected K1;4P4-freegraph of order n � 9, then G does have a 2-factor.Theorem 3 If G is a 2-connected K1;4P4-free graph of order n � 9, then G has a 2-factor.In fact G has a 2-factor with at most 2 cycles.Proof: Select a minimum cutset of G, say A. If jAj � n=2, then Æ(G) � n=2 and G is5
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u uu u uuG6'& $%K2m+1u uu u���AAA u uu u���AAA . . . . . . . . .. . . . . . . . . u uu u���AAA u uu u���AAAuG7Figure 2hamiltonian by Dirac's Theorem in [D52]. Thus, we can assume that �(G) < n=2. Thegraph G � A has either 2 or 3 components, since G is K1;4-free. Denote these componentsby B1; B2; � � �. The minimality of the cutset implies that each vertex of A has an adjacencyin each Bi. In fact, each vertex a 2 A is adjacent to all of the vertices in each of the Bi, forotherwise there would be an induced P4 containing 2 vertices from the Bi, the vertex a, anda vertex from a Bj for j 6= i. Since G is K1;4-free, the independence number �(A) � 3. Thus,the vertices of A (or in fact any subset of vertices of A) can always be partitioned into atmost 3 paths, since the initial vertices of the paths in any such path system with a minimum6



number of paths are independent.First consider the case when there are 3 components of G�A. Each of the componentsB1; B2 and B3 is complete, since G is K1;4-free. Assume jB1j � jB2j � jB3j. By assumptionwe have that jG � Aj � dn=2e � 5. If jB3j � 3, then arbitrarily select 2 vertices, say a1and a2, of A, and let A0 = A � fa1; a2g. A cycle C1 can easily be constructed containingB1 [ B2 [ fa1; a2g. Since A0 can be partitioned into at most 3 paths (possibly none whenA0 = ;), any hamiltonian cycle C 0 in B3 can be extended to a cycle C2 containing A0 byreplacing (at most 3) edges in C 0 by paths in A0 along with edges between A0 and B3. Hence,we are left with the case jB3j = 2, and so jG � Aj � 6 and jAj � 3. The vertices of A canbe partitioned into three paths A1; A2 and A3. In this case a hamiltonian cycle of G can beconstructed using A1; A2 and A3, hamiltonian paths in B1; B2 and B3 and edges between Aand G�A.We are left with the case when G� A has two components B1 and B2. Since G is K1;4-free, �(B1); �(B2) � 2, and so each of B1 and B2 are C-free. Since both B1 and B2 areCP4-free, they are traceable (see [FG97]). Thus, we can choose to partition G�A into either2 or 3 paths to match the number of paths into which A can partitioned. In either case, ahamiltonian cycle can be constructed using either the 4 paths or the 6 paths and edges in thecomplete bipartite graph between A and G�A. This completes the proof of Theorem 3. 2Before considering pairs of graphs, one of which is a claw C, that implies a 2-connectedgraph has a 2-factor, we need to recall the closure concept for claw-free graphs introduced byRyj�a�cek in [R97]. Given a claw-free graph G, the closure cl(G) is the graph obtained from Gby sequentially replacing each connected neighborhood of a vertex of G by a complete graphon the same vertex set. We say a graph G is closed if G = cl(G). The following was provedin [R97], where c(H) denotes the circumference of the graph H.Theorem 4 (Ryj�a�cek [R97]) Let G be a claw-free graph. Then(i) the closure cl(G) is well-de�ned,(ii) there is a triangle-free graph H such that cl(G) = L(H), and(iii) c(G) = c(cl(G)) 7



Then later Ryj�a�cek, Saito, and Schelp in [RSS99] proved the following relationship be-tween 2-factors in a claw-free graph G and its closure cl(G).Theorem 5 (Ryj�a�cek, Saito, and Schelp [RSS99]) A claw-free graph G has a 2-factorwith at most k components if and only if the closure cl(G) has a 2-factor with at most kcomponents.For a given forbidden graph F the property of being CF -free is said to be stable if whenG is a graph that is CF -free then the closure cl(G) is also CF -free. The following result ofBrousek, Scheirmeyer, and Ryj�a�cek in [BSR99] gives some critical pairs of interest that arestable.Theorem 6 (Brousek, Schiermeyer, and Ryj�a�cek [BSR99]) For i; j; k � 1, the proper-ties CPi-free, CZi-free, and CN(i; j; k)-free are all stable. However, the property CB(i; j)-freeis not stable.This means that when considering a condition that implies a CPi-free, CZi-free, orCN(i; j; k)-free claw-free graph G has a 2-factor, the graph G can be assumed to be closed.Note also that if a C-free graph is closed, then the neighborhood of each vertex is either acomplete graph or the disjoint union of 2 complete graphs.Nearly all 2-connected claw-free graphs of very small order have 2-factors and in most casesare also hamiltonian. This follows from a result of Brousek [B98] on minimal 2-connectedclaw-free non-hamiltonian graphs. Let P denote the class of graphs obtained by taking twovertex disjoint triangles, pairing the vertices of the triangles, and joining each pair with vertexdisjoint paths of length at least two or a triangle. For example the graph obtained by joiningthe three pairs by a path with i � 3 vertices, a path with j � 3 vertices, and a triangle T willbe denoted by Pi;j;T 2 P. In Figure 3 are examples of P4;3;3 2 P and P4;T;T 2 P. Brousek[B98] proved the following result.
8



Theorem 7 (Brousek [B98]) A graph G is a minimal 2-connected non-hamiltonian claw-free graph if and only if G 2 P.Since all of the graphs in P have at least 9 vertices and those of order 9 are the 4 graphsbetween L and L� in Figure 4, this gives the following lemma.
uuuu uuu uuu������ XXXXXXXXXXXX ������P4;3;3 uuuu uu uuu u������ XXXXXXXXXXXX ������@@�� ���AAAP4;T;TFigure 3Lemma 1 Let G be a 2-connected claw-free graph of order n. If n � 8, then G is hamiltonian.If G has order 9, then G has a 2-factor unless G = L of Figure 4, and G is hamiltonian unlessG is one of the 4 graphs between L and the graph L� in Figure 4.
uuu uuu uuu������ XXXXXXXXXXXX ������L uu uu uuu u u������ XXXXXXXXXXXX ������AAA ��� @@�� ���AAAL�Figure 4In [BFR99] Brousek, Favaron, and Ryj�a�cek proved a series of theorems using forbiddensubgraphs that implied either a graph was hamiltonian or is a member of some special familiesof graphs. In order to state these results, we picture in Figure 5 three special families ofgraphs. In each case an oval in Figure 5 represents a complete graph with at least 3 verticesand the remark \odd" indicates that the total number of maximal cliques in that graph isodd. Note that none of the graphs in Figure 5 is hamiltonian, but each has a 2-factor.9



Theorem 8 [BFR99] Let G be a 2-connected graph.(i) If G is CP7-free, then G is either hamiltonian or cl(G) 2 F1.(ii) If G is CZ4-free, then G is either hamiltonian or G 2 fP3;T;T ; P3;3;T ; P3;3;3; P4;T;T g, orcl(G) 2 F2.(iii) If G is CN1;1;2-free, then G is either hamiltonian or cl(G) 2 F3.�� ���� ��
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PPPPP ���������� PPPPPF3Figure 5With this result we can give easy and straightforward proofs to three results on forbiddensubgraph conditions that imply the existence of 2-factors.Theorem 9 If G is a 2-connected CP7-free graph of order n � 3, then G has a 2-factor.Proof: By Theorem 8 (i), either G is hamiltonian or cl(G) 2 F1. In the �rst case G has a2-factor and in the second case cl(G) has a 2-factor. However, by Theorem 5, G also has a2-factor. This completes the proof of Theorem 9. 2Theorem 10 If G is a 2-connected CZ4-free graph of order n � 3, then G has a 2-factorunless G is of order 9 and G = L as in Figure 4.Proof: By Theorem 8 (ii), either G is hamiltonian or G 2 fP3;T;T ; P3;3;T ; P3;3;3; P4;T;T g orcl(G) 2 F2. In each of the cases, both G and cl(G) have a 2-factor, except for the one graphL = P3;3;3. This completes the proof of Theorem 10. 210



Theorem 11 If G is a 2-connected CN(2; 1; 1)-free graph of order n � 3, then G has a2-factor.Proof: By Theorem 8 (iii), either G is hamiltonian or cl(G) 2 F3. In the �rst case case Ghas a 2-factor and in the second case cl(G) has a 2-factor. However, by Theorem 5 G alsohas a 2-factor. This completes the proof of Theorem 11. 2Next we prove a similar result for CN(3; 1; 1)-free graphs. Note that in the special case ofCN(2; 2; 1)N(3; 1; 1)-free graphs, we can also get a simple proof from the results in [BFR99],but the CN(3; 1; 1)-free case is not handled there.Theorem 12 If G is a 2-connected CN(3; 1; 1)-free graph of order n � 3, then G has a2-factor unless n = 9 and G = L.Proof: By Lemma 1, the only 2-connected claw-free graph of order n � 9 that does not havea 2-factor is the N(3; 1; 1)-free graph L. Hence we can suppose that n � 10.Let G be a 2-connected CN(3; 1; 1)-free graph of order n � 10 having no 2-factor. ByTheorems 5 and 6, we can suppose G is closed. Thus, by Theorem 4, there is a triangle-freegraph H such that G = L(H) (we will also writeH = L�1(G)). Since G is CN(3; 1; 1)-free, Hcontains no subgraph (not necessarily induced) that is isomorphic to the graph L�1(N(3; 1; 1))(see Figure 6). u u u u uu uu u���@@@L�1(N(3; 1; 1))
Figure 6Note that G being 2-connected implies H is essentially 2-edge-connected, i.e., H has nocutedge the removal of which results in a graph with at least two nontrivial components.Also, by a result of Harary and Nash-Williams [HNW65], G is hamiltonian if and only if Hcontains a dominating closed trail, i.e., a closed trail T such that every edge of H has at11



least one vertex on T . In the proofs, we will use similar constructions to obtain 2-factors inG = L(H).The graph G cannot be hamiltonian and thus, by Theorem 7, G contains an inducedsubgraph F = Pi;j;k 2 P. If one of the i; j; k is at least 4, then F (and hence also G) containsan induced N(3; 1; 1; ), hence each of the i; j; k is either 3 or T . Then the graph H containsas a subgraph (not necessarily induced) a graph D isomorphic to L�1(P3;3;3), L�1(P3;3;T ),L�1(P3;T;T ) or L�1(PT;T;T ). We will always refer to the vertices of these subgraphs as labeledin Figure 7.
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Figure 7Case 1: D = L�1(P3;3;3). Since jE(D)j = 9 and jV (G)j � 10, there is an edge xy 2 E(H) nE(D) such that x 2 V (D). First suppose that y =2 V (D). Then, up to a symmetry, x = a1or x = b1, but then in the �rst case the edges fa2b2; b2b1; a2d2; d2d1; a2c2; c2c1; c1a1; a1ygand in the second case the edges fa1b1; b1y; a1c1; c1c2; a1d1; d1d2; d2a2; a2b2g determine acopy of L�1(N(3; 1; 1)) in H. Hence all edges in E(H) n E(D) have both ends in V (D).By symmetry and since H is triangle-free, we can suppose x = b1 and y = c2, but then(a1; c1; c2; b1; b2; a2; d2; d1; a1) is a hamiltonian cycle in H, implying G = L(H) has a 2-factor.Case 2: D = L�1(P3;3;T ). Let xy 2 E(H) n E(D). If y =2 V (D) and x 2 fa1; a2g, say,x = a1, or if y =2 V (D) and x 2 fb1; b2; c1; c2g, say, x = b1, then fa2b2; b2b1; a2d; dd0; a2c2;c2c1; c1a1; a1yg or fa1b1; b1y; a1d; dd0; a1c1; c1c2; c2a2; a2b2g gives an L�1(N(3; 1; 1)). Thus, dis a cutvertex of H.If there is a path P of length 3 outside D � d0 with endvertex d, say, P = (d; u1; u2; u3)(not excluding the possibility that d0 2 fu1; u2; u3g), then we have an L�1(N(3; 1; 1)) at12



fa1b1; b1b2; a1c1; c1c2; a1d; du1; u1u2; u2u3g, a contradiction. This immediately implies thatif x; y =2 V (D � d0), then one of x; y (say, x) is adjacent to d. Since the removal of theedge xd cannot separate xy from D, there is a path P = (u1; : : : ; uk) such that u1 2 fx; yg,uk 2 fd; d0g and u2; : : : ; uk�1 2 V (H) n V (D). But then in each of the possible cases we geta path of length 3 outside D � d0 since H is triangle-free.This implies that all edges in E(H) nE(D) are incident to d or have both ends in V (D),but then the cycle (a1; c1; c2; a2; b2; b1; a1) together with the star centered at d determine twocycles in G = L(H) that can be extended to a 2-factor of G.Case 3: D = L�1(P3;T;T ). Let again xy 2 E(H) n E(D) and suppose that y =2 V (D). Thenimmediately x =2 fa1; a2g, for if e.g. x = a1, then fa2d; dd0; a2c; cc0; a2b2; b2b1; b1a1; a1yg givesan L�1(N(3; 1; 1)). Thus, a1, a2 have no neighbor outside D.Suppose that xy is at distance 2 from D, and let xz 2 E(H) for some z 2 V (D) (notethat we already know that z =2 fa1; a2g). If z = b1, then we have an L�1(N(3; 1; 1)) atfa2d; dd0; a2c; ca1; a2b2; b2b1; b1x; xyg, hence z 6= b1. Symmetrically, z 6= b2. If z = d0, then wehave an L�1(N(3; 1; 1)) at fa1b1; b1b2; a1c; ca2; a1d; dd0; d0x; xyg, hence z 6= d0 and, symmet-rically, z 6= c0. Note that a symmetric argument implies that there is no edge between any ofx; y and c0; d0.By symmetry, it remains to consider the possibility z = d. For the sake of brevity,we merge this possibility with the case that x = d0 (i.e., we suppose that x is adjacent tod, not excluding the possibility x = d0). By the connectivity assumption, there is a pathP = (u1; : : : ; uk), k � 2, outside D with u1 2 fx; yg and uk 2 fd; cg. If uk = d, then k � 3 foru1 = y or k � 4 for u1 = x (since H is triangle-free) and we get an L�1(N(3; 1; 1)) in a waysimilar to that in the case z = d0. Thus, uk = c. We distinguish the following possibilities.Case L�1(N(3; 1; 1))u1 = y, k � 3 fda1; a1b1; da2; a2b2; dx; xy; yu2; u2u3gu1 = y, k = 2 fda1; a1b1; da2; a2b2; dx; xy; yc; cc0gu1 = x, k � 4 fda1; a1b1; da2; a2b2; dx; xu2; u2u3; u3u4gu1 = x, k = 3 fda1; a1b1; da2; a2b2; dx; xu2; u2c; cc0gHence we have u1 = x and k = 2 (i.e., xc 2 E(H)) as the only remaining possibility.13



We can summarize that if there is an edge xy 2 E(H) nE(D) with y =2 V (D), then thereare the following possibilities:(i) xy is at distance 2 from D, x is adjacent to both c and d, and y has no neighbor in D,or(ii) x 2 fb1; b2; c; dg.Let B denote the set of all edges at distance 2 from D, and let x1y1; x2y2 2 B. Then, by(i), we have x1c; x2c; x1d; x2d 2 E(H), but then fca2; a2b2; cx1; x1y1; cx2; x2d; da1; a1b1g isan L�1(N(3; 1; 1)), unless x1 = x2. Thus, if B 6= ;, then there is a vertex x such thatxc; xd 2 V (H) and every edge in B contains x. This implies that if B 6= ;, then the cycle(a1; b1; b2; a2; c; x; d; a1) contains at least one vertex of every edge of H and hence G = L(H) ishamiltonian, and if B = ;, then the cycle (a1; b1; b2; a2; c; a1) together with the star centeredat d correspond to cycles in G that can be extended to a 2-factor of G.Case 4: D = L�1(PT;T;T ). Suppose there is an edge xy 2 E(H) n E(D) at distance 2 fromD0 = D � fb0; c0; d0g, and x has a neighbor in D0.First observe that neither x nor y can be adjacent to any of a1; a2, for if e.g. xa1 2 E(H),then fa2b; bb0; a2c; cc0; a2d; da1; a1x; xyg gives an L�1(N(3; 1; 1)) (where we suppose that y 6=b0 and y 6= c0, otherwise we interchange the roles of the b's, c's and d's accordingly). We showthat there are two vertices u; v 2 fb; c; dg such that either xu; xv 2 E(H) or xu; yv 2 E(H).By symmetry, suppose that xb 2 E(H), but neither x nor y is adjacent to any of c; d (notethat we do not exclude the possibility that x = b0). By the connectivity assumption, there isa path P = (u1; : : : ; uk) such that u1 2 fx; yg and uk 2 fb; c; dg. If uk = b, then for u1 = xwe have k � 4, and for u1 = y we have k � 3 since H is triangle-free. Then, in the �rst casefa1d; da2; a1c; cc0; a1b; bx; xu2; u2u3g and in the second case fa1d; da2; a1c; cc0; a1b; bx; xy; yu2ggives an L�1(N(3; 1; 1)). Hence uk 2 fc; dg, say, uk = c. By the assumption, neither xnor y is adjacent to c, implying k � 3. Then, in the �rst case the subgraph given byfa1d; dd0; a1b; ba2; a1c; cuk�1; uk�1uk�2; : : : ; xyg contains an L�1(N(3; 1; 1)), and in the sec-ond case fa1d; dd0; a1c; ca2; a1b; bx; xy; yu2g gives an L�1(N(3; 1; 1)).For any fu; vg � fb; c; dg denote 14



B1u;v = fx; y 2 E(H)j x; y =2 V (D0); xu 2 E(H); xv 2 E(H)g, andB2u;v = fx; y 2 E(H)j x; y =2 V (D0); xu 2 E(H); yv 2 E(H)g.We have shown that every edge xy with x; y =2 V (D0) belongs to some Bju;v (if some edgebelongs to more Bju;v's, we choose one of them).Let x1y1 2 B1u;v and x2y2 2 B2u;v for some u; v 2 fb; c; dg, say, u = b and v = c. Then x1y1and x2y2 have no vertex in common since H is triangle-free, but then fca2; a2d; cx1; x1y1; cy2;y2x2; x2b; ba1g is an L�1(N(3; 1; 1)). This proves that for any fu; vg � fb; c; dg, at most oneof B1u;v, B2u;v is nonempty.Next suppose that jB2u;vj � 2 for some fu; vg � fb; c; dg, say, u = b, v = c, andlet x1y1; x2y2 2 B2b;c. Then x1 6= y2 and x2 6= y1 since H is triangle-free, and thenfcy1; y1x1; ca2; a2d; cy2; y2x2; x2b; ba1g if x1 6= x2, y1 6= y2, or fa2b; ba1; a2d; dd0; a2c; cy1;y1x1; x1y2g if x1 = x2, y1 6= y2, gives an L�1(N(3; 1; 1)) (the case x1 6= x2, y1 = y2 issymmetric). Hence jB2u;vj � 1 for any fu; vg � fb; c; dg.Similarly, suppose jB1u;vj � 2 for some fu; vg � fb; c; dg, say, u = b, v = c, and letx1y1; x2y2 2 B1b;c. Again clearly x1 6= y2 and x2 6= y1 since H is triangle-free. If x1 6= x2, thenfbx1; x1y1; bx2; x2y2; ba1; a1d; da2; a2cg for y1 6= y2, or fa2c; ca1; a2d; dd0; a2b; bx1; x1y1; y1x2gfor y1 = y2 gives an L�1(N(3; 1; 1)). This proves that for every nonempty B1u;v there is avertex xuv such that xuvu; xuvv 2 E(H) and every edge in B1u;v contains xuv.Speci�cally, for any fu; vg � fb; c; dg, either B1u;v = B2u;v = ;, or exactly one of B1u;v,B2u;v is nonempty and there is a u; v-path Puv of length 2 or 3 such that Puv is internallyvertex-disjoint from D0 and every edge in the B1u;v (B2u;v) has at least one vertex on Puv. Wenow have, up to symmetry, the following possibilities.a) Bju;v = ; for any fu; vg � fb; c; dg and j 2 f1; 2g. Then the cycle (a1; b; a2; c; a1)together with the star centered at d give two cycles in G that can be extended to a2-factor of G.b) Bj0b;c 6= ; for some j0 2 f1; 2g, Bjc;d = Bjb;d = ; for all j 2 f1; 2g. Then the cycle(a1; b; Pbc; c; a2; d; a1) gives a hamiltonian cycle in G.c) Bj1b;c 6= ; and Bj2c;d 6= ; for some j1; j2 2 f1; 2g, Bjb;d = ; for all j 2 f1; 2g. Then theclosed trail (a1; b; Pbc; c; Pcd; d; a2; c; a1) gives a hamiltonian cycle in G.15



d) Bj1b;c 6= ;, Bj2c;d 6= ; and Bj3b;d 6= ; for some j1; j2; j3 2 f1; 2g. Then the closed trail(b; Pbc; c; Pcd; d; a1; b; Pbd; d; a2; b) gives a hamiltonian cycle in G.This completes the proof of Theorem 12. 2We will next prove the following theorem which is another forbidden subgraph suÆcientcondition for a graph to have a 2-factor.Theorem 13 If G is a 2-connected graph of order n � 3 that is C-free and Ci-free for alli � 6, then G has a 2-factor.The following lemma will be useful in the proof of Theorem 13.Lemma 2 Let k � 4 be an integer and let G be a graph that is C-free and Ci-free for alli � k. Then, cl(G) is also C-free and Ci-free for all i � k.Proof: In [R97] is was shown that cl(G) is C-free. Suppose that G is not C`-free for some` � k. Let G = G1 < G2 < � � � < Gs = cl(G) be a sequence of graphs that yields the closurecl(G). Assume that Gr is the �rst graph in the sequence that yields the �rst induced cycleC = (v1; v2; � � � ; v`; v1) for some ` � k. Then, Gr�1 has no induced cycles of length i � k, andGr is obtained from Gr�1 by replacing the connected neighborhood N of a vertex xi 2 Gr�1by a complete graph on N . The cycle C and the complete graph induced by N have preciselytwo vertices and the edge between them in common, which without loss of generality is v1v2,since C would be induced in Gr�1 if there were no edges and C would not be induced inGr if there were at least two edges. Thus, xi is adjacent to precisely v1 and v2 in Gr�1 andv1v2 62 E(Gr�1). This implies that C� = (v1; xi; v2; � � � ; v`; v1) is an induced cycle in Gr�1, acontradiction. This completes the proof of Lemma 2. 2Proof: (of Theorem 13) By Lemma 2 and Theorem 5 we can assume that G is closed.Therefore by Theorem 4 there is a triangle-free graph H such that G = L(H). Since anycycle of length p in H determines an induced cycle of length p in G, the only cycles in H16



are of length 4 and 5. There is no cutedge e of H such that H � e has two componentseach containing an edge, since this would imply that G is not 2-connected. Thus, the onlycutedges of H are pendant edges, and the deletion of the pendant edges of H results in a2-edge connected graph H� with only cycles of length 4 and 5.It is suÆcient to show that H� contains a (not necessarily connected) spanning subgraphF such that(i) dF (x) is even for every x 2 V (H�),(ii) the set fx 2 V (H�)j dF (x) = 0g is independent in H� (i.e., every edge of H� has atleast one vertex in a nontrivial component of F ).Indeed, if F is such a subgraph, then every nontrivial component of F yields a cycle in G.For every vertex x with dF (x) = 0 which is contained in an edge in E(H) n E(H�), we havedH(x) � 3 and hence the star in H centered at x gives a cycle of length at least 3 in G. Bythe condition (ii), this system of cycles can be extended to a 2-factor of G.Obviously, it is suÆcient to show the existence of such a subgraph in every block of H�,hence we can suppose that H� is 2-connected.If H� contains no C5, then H� is bipartite. In fact, H� is complete bipartite, since theexistence of nonadjacent vertices in opposite parts of a 2-connected bipartite graph impliesthe existence of a cycle of length at least 6. Thus, in addition, H� is isomorphic to a K2;s forsome s � 2, and the existence of F is straightforward.Thus, H� contains a cycle D = C5. Set D = (v1; v2; v3; v4; v5; v1), and let u 2 V (H�) nV (D). Since H� is 2-connected, there are two internally vertex-disjoint paths from u to twodistinct vertices of D. Then, the only possibility that does not imply the existence of a cycleof length at least 6 is that both paths are of length 1 and their endvertices are nonconsecutiveon D. By symmetry, we can suppose that uv1 2 E(H�) and uv3 2 E(H�).If there is an edge u1u2 2 E(H�) such that u1; u2 =2 V (D), then, by the previous obser-vation, both u1 and u2 must have two nonconsecutive neighbors on D, but this immediatelyimplies the existence of a cycle of length at least 6 (note that the neighbors of u1; u2 on Dmust be distinct since H� is triangle-free). Hence the set V (H�) n V (D) is independent inH� and the existence of F follows. 217



Note that the graph L = P3;3;3 shows that Theorem 13 cannot be extended to i � 7.With Theorem 13 and the following technical lemma we will be prepared to prove anadditional suÆcient forbidden subgraph condition for the existence of a 2-factor using ageneralized bull.Lemma 3 Let G be a 2-connected claw-free graph of order n � 3, D = (v1; v2; � � � ; vp; v1) aninduced cycle of length p � 6, S the vertices of G a distance 1 from D, and T the vertices ofG a distance at least 2 from D. The following is true for G.(i) S can be partitioned into p sets Si such that each vertex in Si is adjacent to vi and vi+1but not vi�1.(ii) Each set Si induces a complete subgraph of G.(iii) A vertex in Si with an adjacency in T is adjacent to precisely vi and vi+1 in D.(iv) For any S0 � S, the graph spanned by D [ S0 is hamiltonian.(v) If T = ;, then G is hamiltonian.Proof: No vertex u of S can be adjacent to vertex vi of D and non-adjacent to both vi�1and vi+1, since that would give a claw centered at vi in D. Also, no vertex u of S can beadjacent to all of the vertices of D, since this would give a claw centered at u. Thus, theremust be some i such that uvi�1 62 E(G), but uvi; uvi+1 2 E(G). Thus, u 2 Si. Of course,it is possible that u could be in some other Sj, but if this occurs, arbitrarily choose one ofthem. This gives a partition of S.If u1; u2 2 Si, then to avoid a claw centered at vi implies u1u2 2 E(G). Thus, Si mustspan a complete subgraph. If a vertex u 2 Si has an adjacency in T , then to avoid a claw ucannot be adjacent to 2 independent vertices of D. Hence, u has precisely 2 adjacencies inD, and they are vi and vi+1.Since each Si is complete, there is a path Qi from vi to vi+1 that contains all of the verticesof Si \ S0. A hamiltonian cycle can be formed from the paths Q1; Q2; � � � ; Qp, which implies18



that the graph spanned by D [ S0 is hamiltonian. If T = ;, then G = D [ S is hamiltonianby the argument of the previous paragraph. This completes the proof of Lemma 3. 2Theorem 14 If G is a 2-connected CB(4; 1)-free graph of order n � 3, then G has a 2-factorunless n = 9 and G = L.Proof: By Lemma 1, the only 2-connected claw-free graph of order n � 9 that does nothave a 2-factor is the B(4; 1)-free graph L. Hence we can assume that n � 10. Also, byTheorem 13 there must be a cycle of length at least 6. We will assume that G does not havea 2-factor and show that this leads to a contradiction.Assume the notation of Lemma 3 and let D be an induced cycle of maximum length, sayp. In the case when T = ;, a contradiction is reached since G is hamiltonian by Lemma 3.Hence we can assume that T 6= ;.We will �rst show that the cycle D has at most 6 vertices, so assume that p � 7. Thereis a vertex u of distance 2 from D, and with no loss of generality we can assume we havethe path P = (u; u0; v1) with u0 2 S1. This gives an induced B(4; 1) with the verticesfu; u0; v1; v2; v3; v4; v5; v6g. This contradiction implies that p = 6.No vertex u1 of T can be a distance 5 from D. For example, assume that P = (u1; u2; u3;u4; u5; v1) is such a distance path and that u5 2 S1. Then, there is an induced B(4; 1) usingthe vertices fu1; u2; u3; u4; u5; v1; v2; v3g. Hence, we can assume that all vertices in T are adistance at most 4 from D. For 1 � i � 6 and 2 � j � 4 let Tij be the vertices of T that area distance j from D such that one of the distance paths to D contains a vertex in Si. Eachvertex in T is in some Tij . For each i let S0i be the vertices of Si that are adjacent to a vertexof T . Consider the graph induced by S01 [ T12 [ T13 [ T14. If S01 consists of a single vertex,then T12 is complete since G is claw-free. If there is a vertex w 2 T12 and vertices u1; u2 2 S01such that wu1 2 E(G) but wu2 62 E(G), then there is an induced B(4; 1) using the verticesfw; u1; u2; v2; v3; v4; v5; v6g. This gives a contradiction that implies that each vertex in T12 isadjacent to all of the vertices of S01, and so T12 is also complete. The exact same argumentapplies for T13 relative to T12 and for T14 relative to T13 as well. Thus we can conclude forall i and j that each Tij is complete and there are complete bipartite graphs between Ti3 andTi4, between Ti2 and Ti3 and also between S0i and Ti2.19



Consider the case when there is a w1 2 T12 and a w3 2 T32. Let u1 and u3 bevertices in S01 and S03 respectively. Then, there is an induced B(4; 1) using the verticesfw3; u3; v3; v4; v5; v6; v1; u1g, unless either u1u3 2 E(G) or u1w3 2 E(G). To avoid an in-duced claw, u1u3 2 E(G) implies that u1w3 2 E(G), and hence we can assume that w3 2 T12.Consequently, each vertex in T33 is also in T13, and each vertex in T34 is also in T14. By sym-metry, we further have T52 � T12, T53 � T13 and T54 � T14. The same argument applied fori = 2 gives Tij � T2j for i = 4; 6 and j = 2; 3; 4. We have shown that the vertices of T arepartitioned into 6 sets (some could be empty), namely T = T12 [ T13 [ T14 [ T22 [ T23 [ T24.Also, observe that if u1 2 S01 and u2 2 S02, then u1u2 62 E(G), since this implies the exis-tence of an induced cycle of length 7, namely, the cycle (u1; u2; v3; v4; v5; v6; v1; u1). Likewise,no vertex of S01 [ T12 [ T13 [ T14 is adjacent to any vertex of S02 [ T22 [ T23 [ T24.Our next objective is to show that the vertices of T can be covered by a system of vertexdisjoint cycles that are disjoint from the cycle D. This will verify that G has a 2-factor,since the cycle D can be expanded to a cycle that contains the remaining vertices of G byLemma 3.By the 2-connectedness of G, Tij 6= ; implies jTi(j�1)j � 2 for i = 1; 2 and j = 3; 4. Thisimmediately implies there is a cycle that covers all of Ti2 [ Ti3 [ Ti4 if Ti3 6= ;, i = 1; 2. IfTi3 = ; and jTi2 [ S0ij � 3, then there is a cycle spanning the set Ti2 [ S0i. Hence we are leftwith the cases that either Ti3 = ; or jTi2j = jS0ij = 1, i = 1; 2, and at least one of T12, T22 isnonempty (otherwise we are done by Lemma 3).Suppose that T12 6= ; and set T12 = fw1g and S01 = fu1g. By the connectivity assumption,w1 must be adjacent to a vertex ui0 2 S0i0 for some i0 6= 1. We already know that i0 =2 f2; 6g. Ifi0 = 3, then we must have u1u3 2 E(G) to avoid the induced cycle (w1; u3; v4; v5; v6; v1; u1; w1)of length 7, but then there is the triangle (u1; u3; w1; u1). The case i0 = 5 is symmetric andhence it remains to consider the case i0 = 4. Then, by a symmetric argument (in which S04plays the role of S01) we conclude that jS04j = 1. Set S04 = fu4g.Now, if T22 6= ;, say, T22 = fw2g and S02 = fu2g, then, by the same argument we get thatw2 is adjacent to a u5 2 S05 and S05 = fu5g, but then there is a cycle of length greater than6, namely (u1; w1; u4; v5; u5; w2; u2; v2; u1) if u4u5 =2 E(G), or (u1; w1; u4; u5; w2; u2; v2; u1) ifu4u5 2 E(G), respectively. This contradiction proves that T22 = ; and we conclude that20



T = T12 = fw1g.Suppose S2 6= ; and let u2 2 S2. To avoid the B(4; 1) induced by fw1; u4; v4; v5; v6; v1;v2; u2g, we must have u2v4 2 E(G). Hence all vertices in S2 are adjacent to v4, implying thereis a cycle that covers all of S2[S3[fv2; v3; v4g, and this cycle together with a cycle obtainedby applying Lemma 3 to the cycle (u1; w1; u4; v5; v6; v1; u1) gives a 2-factor in G. Hence weget S2 = ;, and, similarly, S3 = S5 = S6 = ;. Finally, if there is a vertex u 2 S1 n S01, thenthe set fv3; v2; u; v1; v6; v5; u4; w1g induces a B(4; 1). Hence S1 n S01 = ; and, symmetrically,S4 n S04 = ;. This implies that G is isomorphic to the graph L = P3;3;3, contradicting theassumption that n � 10. 2Theorem 2 is an immediate consequence of Theorems 3, 9, 10, 12, and 14.Remark. Note that Theorem 2 can be stated in a slightly stronger form, since all 2-connectedgraphs of order n � 3 that satisfy the forbidden subgraph conditions have a 2-factor exceptfor a very limited number of graphs. In the case of claw-free graphs the only exception is thegraph L = P3;3;3 in Figure 3. In the case of K1;4P4-free graphs it is straightforward to verifythat there are only 8 exceptions, namely the graphsH + (Ki [Kj [Kk);where H = K2 or K2 and 1 � i � j � k � 2.References[Be91] P. Bedrossian, Forbidden Subgraph and Minimum Degree Conditions forHamiltonicity, Ph.D Thesis, Memphis State University, 1991[B98] J. Brousek, Minimal 2-Connected Non-Hamiltonian Claw-Free Graphs, DiscreteMath. 191 (1998), 54-46.[BFR99] J. Brousek, O. Favaron, and Z. Ryj�a�cek, Forbidden Subgraphs, Hamiltonicity andClosure in Claw-Free Graphs, Discrete Math. 196 (1999), 143-155.[BSR99] J. Brousek, Z. Ryj�a�cek, and I. Schiermeyer, Forbidden Subgraphs, Stability, andHamiltonicity, Discrete Math. 197/198 (1999), 143-155.21
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