Forbidden Subgraphs that Imply

2-Factors

J. R. Faudree
Department of Mathematics and Computer Science
University of Alaska at Fairbanks
Fairbanks, AK, USA

R. J. Faudree Z. Ryjacek
Department of Mathematical Sciences Department of Mathematics
University of Memphis University of West Bohemia
Memphis, TN, USA Plzen, Czech Republic

August 29, 2004

Abstract

The connected forbidden subgraphs and pairs of connected forbidden subgraphs that
imply a 2-connected graph is hamiltonian have been characterized by Bedrossian [Be91],
and extensions of these excluding graphs for general graphs of order at least 10 were proved
by Faudree and Gould [FG97]. In this paper a complete characterization of connected
forbidden subgraphs and pairs of connected forbidden subgraphs that imply a 2-connected
graph of order at least 10 has a 2-factor will be proved. In particular it will be shown
that the characterization for 2-factors is very similar to that for hamiltonian cycles, except
there are seven additional pairs. In the case of graphs of all possible orders, there are four
additional forbidden pairs not in the hamiltonian characterization, but a claw is part of

each pair.



1 Introduction

We will deal only with finite graphs without loops or multiple edges. Notation will be
standard, and we will generally follow the notation of Chartrand and Lesniak in [CL96]. The
degree of a vertex v in a graph G will be denoted by d(v), and the minimum and maximum
degree of vertices in G will be denoted by d(G) and A(G) respectively. The independence
number of G will be denoted by «a(G), the connectivity by «(G), and the clique number by
w(G).

Given a graph F', a graph G is said to be F'-free if there is no induced subgraph of
G that is isomorphic to F. The graph F is generally called a forbidden subgraph of G.
In the case of forbidden pairs of graphs, say F and H, we will simply say the graph is
F H-free, as opposed to {F, H}-free. Forbidden singletons and forbidden pairs of connected
graphs that imply that a 2-connected graph is hamiltonian have been characterized. Also,
similar characterizations have been given for other hamiltonian properties such as traceable,
pancyclic, cycle extendable, etc. A collection of forbidden graphs used in results of this type
are pictured in Figure 1. The graph obtained from a triangle by attaching disjoint paths of
length 7, j, and k respectively to the 3 vertices of the triangle will be denoted by N (i, j, k).
These graphs are generalized nets, and in particular, Z; = N(4,0,0), B = N(1,1,0), and
N = N(1,1,1). If 4,5 > 0, then the graphs N(i,4,0) are the generalized bulls and will be
denoted by just B(i, 7).

The following result, which extends the results of Bedrossian in [Be91], gives all forbidden
singletons and forbidden pairs that imply hamiltonicity in 2-connected graphs of order at
least 10. A survey of results of this kind for other hamiltonian type properties can be found

in [F96], and a more general survey on claw-free graphs can be found in [FFR97].

Theorem 1 (Faudree, Gould [FG97]) The only connected forbidden subgraph F that
implies a 2-connected graph G is hamiltonian is P3. Let X and Y be connected graphs with
X, Y £ P53, and let G be a 2-connected graph of order n. > 10. Then, G being XY -free implies
that G is hamiltonian if, and only if, up to the order of the pairs, X = C and Y is a subgraph
of either Ps, N, W, or Zs.
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Figure 1

The characterization for 2-factors corresponding to Theorem 1 for hamiltonian cycles is

given by the following result, which is the main result of this paper.

Theorem 2 The only connected forbidden subgraph F that implies a 2-connected graph G
has a 2-factor is P3. Let X and Y be connected graphs with X,Y £ Ps, and let G be a
2-connected graph of order n > 10. Then, G being XY -free implies that G has a 2-factor if
and only if, up to the order of the pairs, X = C and Y is a subgraph of either P;, Z4, B(4,1),
or N(3,1,1), or X = K4 and Y = Py.

There are 7 additional pairs of forbidden subgraphs in the characterization for 2-factors
not present for hamiltonian cycles; those involving the claw, namely CP;, CZ;, CB(3,1),
CB(4,1), CN(2,1,1), and CN(3,1,1), as well as the pair K; 4P;. Of course, the graphs
P; and Z; are subgraphs of B(4,1), so there are only two new maximal forbidden sub-
graphs in Theorem 2, namely N (3,1,1) and B(4,1). Three of these forbidden pairs, namely
CN(3,1,1),CB(4,1), and K, 4Py, do not imply the existence of a 2-factor for all graphs, in

particular for graphs of order 9 or less. Hence, there are only four possible additional pairs of



forbidden graphs implying the existence of a 2-factor when applied to all graphs. Note that
the 2-connected condition is necessary. Neither a path P, nor the graph G,, obtained from a
complete graph by attaching an edge has a 2-factor since some vertices of the graph are not
on cycles. However, all of the forbidden pair conditions in Theorem 2 are satisfied by either

P, or G,,.

As a consequence of the proof of Theorem 2, there also results a complete characterization
of all connected forbidden graphs and connected forbidden pairs of graphs that imply the
existence of a 2-factors for all 2-connected graphs, not just 2-connected graphs of order at

least 10.

Corollary 1 A connected forbidden subgraph F implies a 2-connected graph G has a 2-factor
if and only if F = P3. Let X and Y be connected graphs with X, Y £ Ps, and let G be a
2-connected graph of order n. Then, G being XY -free implies that G has a 2-factor if, and
only if, up to the order of the pairs, X = C and Y is a subgraph of either P;, Z4, B(3,1) or
N(2,1,1).

Theorem 2 will be proved in the next section.

2 PROOFS

The proof of Theorem 2 will be broken into several results. We begin by proving that the
conditions of Theorem 2 are necessary for forbidden subgraphs to imply a 2-factor in a 2-

connected graph.

Proof: First note that none of the graphs G1, Gs, G3, G4, G5,Gg, and G7 in Figure 2 have
a 2-factor, and that neither G5 nor Gg have an induced claw. Any collection of forbidden
subgraphs that imply the existence of a 2-factor must have at least one of the subgraphs in
the collection as an induced subgraph of each G;, (1 <i <7).

Let H be a connected graph such that G being H-free implies that G has a 2-factor.
Thus, H must be a subgraph of each of the graphs G1,G3, and G5 in Figure 2. However,



since G5 has no induced claw C, a path is the only graph common to G; and G5. However,
the longest induced path in G5 is P3. Hence, H must be a subgraph of P3, and so H = Ps.

Let X and Y be a pair of connected graphs (X and Y # P3) such that G being XY -free
implies that G' has a 2-factor. We will first show that either X or Y must be C or K 4.
Assume that this is not true. With no loss of generality we can assume that X is a subgraph
of G;. This implies that either X = C, or X contains an induced path P4. Since both Ga
and G3 do not have induced Py’s, the graph Y must be an induced subgraph of both G5 and
GG3. Being a subgraph of G5 implies that Y must be a complete bipartite graph, but the only
complete bipartite subgraph of G5 is a star. Thus, Y is a subgraph of K 4. This verifies the
claim, so we can assume that X = C or Kj 4.

If X = K 4, then Y must be an induced subgraph of G, G5, and G7, since none of these
graphs contains a K 4. However, the only induced graph common to these graphs is a path,
and the longest induced path is a P4. Thus, if X = K4, then Y = P;. If X = C, then Y
must be an induced subgraph of G5, and so Y is either a path or a N (i, j, k) for appropriate
1,7, and k. Also, Y must be a subgraph of Gg, since it is claw-free. It is straightforward
to check that the longest induced path in Gg is a Py, the largest induced Z; is a Zy, the
maximum generalized bull is a N(4,1,0), and the maximum generalized net is a N(3,1,1).

This completes the proof. O

We will next show the forbidden pairs in Theorem 2 imply the existence of a 2-factor
in a 2-connected graph. We will start with the pair K;4P;. Note that for n > 9 the
2-connected graph Ky + (K2 U K9 U K;,_g) has no hamiltonian cycle, but it does have a 2-
factor. Also, observe that the graph K+ (3K5) is 2-connected, does not have a 2-factor, and
it is a K 4P,-free graph. Also, this graph has subgraphs of order 5,6, and 7 with the same
properties. However, the following theorem implies that if G' is a 2-connected K 4P;-free

graph of order n > 9, then G does have a 2-factor.

Theorem 3 If G is a 2-connected Ky 4P,-free graph of order n > 9, then G has a 2-factor.

In fact G has a 2-factor with at most 2 cycles.

Proof: Select a minimum cutset of G, say A. If |A| > n/2, then §(G) > n/2 and G is



G

Figure 2

hamiltonian by Dirac’s Theorem in [D52]. Thus, we can assume that x(G) < n/2. The
graph G — A has either 2 or 3 components, since GG is K 4-free. Denote these components
by Bi, Bs,---. The minimality of the cutset implies that each vertex of A has an adjacency
in each B;. In fact, each vertex a € A is adjacent to all of the vertices in each of the B;, for
otherwise there would be an induced Py containing 2 vertices from the B;, the vertex a, and
a vertex from a B; for j # i. Since G is K, 4-free, the independence number a(A) < 3. Thus,
the vertices of A (or in fact any subset of vertices of A) can always be partitioned into at

most 3 paths, since the initial vertices of the paths in any such path system with a minimum



number of paths are independent.

First consider the case when there are 3 components of G — A. Each of the components
By, By and Bj is complete, since G is K 4-free. Assume |B;| < |B;| < |Bs|. By assumption
we have that |G — A| > [n/2] > 5. If |Bs| > 3, then arbitrarily select 2 vertices, say a1
and ag, of A, and let A" = A — {a1,a2}. A cycle C; can easily be constructed containing
By U By U {ay,a9}. Since A’ can be partitioned into at most 3 paths (possibly none when
A" = ), any hamiltonian cycle C’ in B3 can be extended to a cycle Cy containing A’ by
replacing (at most 3) edges in C’ by paths in A" along with edges between A’ and Bsz. Hence,
we are left with the case |Bs| = 2, and so |G — A| < 6 and |A| > 3. The vertices of A can
be partitioned into three paths A;, Ay and As. In this case a hamiltonian cycle of G can be
constructed using A, A and As, hamiltonian paths in By, By and B3 and edges between A
and G — A.

We are left with the case when G — A has two components By and By. Since G is Kj 4-
free, a(By),a(B2) < 2, and so each of B; and By are C-free. Since both B; and Bs are
C Py-free, they are traceable (see [FG97]). Thus, we can choose to partition G — A into either
2 or 3 paths to match the number of paths into which A can partitioned. In either case, a
hamiltonian cycle can be constructed using either the 4 paths or the 6 paths and edges in the

complete bipartite graph between A and G — A. This completes the proof of Theorem 3. O

Before considering pairs of graphs, one of which is a claw C, that implies a 2-connected
graph has a 2-factor, we need to recall the closure concept for claw-free graphs introduced by
Ryjacek in [R97]. Given a claw-free graph G, the closure cl(G) is the graph obtained from G
by sequentially replacing each connected neighborhood of a vertex of G by a complete graph
on the same vertex set. We say a graph G is closed if G = cl(G). The following was proved
in [R97], where ¢(H) denotes the circumference of the graph H.

Theorem 4 (Ryjdcek [R97]) Let G be a claw-free graph. Then
(1) the closure cl(G) is well-defined,
(1) there is a triangle-free graph H such that cl(G) = L(H), and

(iii) o(G) = e(cl(G))



Then later Ryjicek, Saito, and Schelp in [RSS99] proved the following relationship be-

tween 2-factors in a claw-free graph G and its closure cl(G).

Theorem 5 (Ryjdcéek, Saito, and Schelp [RSS99]) A claw-free graph G has a 2-factor
with at most k components if and only if the closure cl(G) has a 2-factor with at most k

components.

For a given forbidden graph F' the property of being C'F-free is said to be stable if when
G is a graph that is C'F-free then the closure ¢/(G) is also CF-free. The following result of
Brousek, Scheirmeyer, and Ryjicek in [BSR99] gives some critical pairs of interest that are

stable.

Theorem 6 (Brousek, Schiermeyer, and Ryjdéek [BSR99]) Fori,j,k > 1, the proper-
ties C Pj-free, CZ;-free, and C'N (i, j, k)-free are all stable. However, the property CB(i, j)-free

18 not stable.

This means that when considering a condition that implies a CP;-free, C'Z;-free, or
CN (i, 7, k)-free claw-free graph G has a 2-factor, the graph G can be assumed to be closed.
Note also that if a C-free graph is closed, then the neighborhood of each vertex is either a
complete graph or the disjoint union of 2 complete graphs.

Nearly all 2-connected claw-free graphs of very small order have 2-factors and in most cases
are also hamiltonian. This follows from a result of Brousek [B98] on minimal 2-connected
claw-free non-hamiltonian graphs. Let P denote the class of graphs obtained by taking two
vertex disjoint triangles, pairing the vertices of the triangles, and joining each pair with vertex
disjoint paths of length at least two or a triangle. For example the graph obtained by joining
the three pairs by a path with ¢ > 3 vertices, a path with 7 > 3 vertices, and a triangle T will
be denoted by P, jr € P. In Figure 3 are examples of P,33 € P and Py € P. Brousek
[B98] proved the following result.



Theorem 7 (Brousek [B98]) A graph G is a minimal 2-connected non-hamiltonian claw-

free graph if and only if G € P.

Since all of the graphs in P have at least 9 vertices and those of order 9 are the 4 graphs

between L and L* in Figure 4, this gives the following lemma.
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Figure 3

Lemma 1 Let G be a 2-connected claw-free graph of order n. Ifn <8, then G is hamiltonian.
If G has order 9, then G has a 2-factor unless G = L of Figure 4, and G is hamiltonian unless

G is one of the 4 graphs between L and the graph L* in Figure /.

Figure 4

In [BFR99] Brousek, Favaron, and Ryjicek proved a series of theorems using forbidden
subgraphs that implied either a graph was hamiltonian or is a member of some special families
of graphs. In order to state these results, we picture in Figure 5 three special families of
graphs. In each case an oval in Figure 5 represents a complete graph with at least 3 vertices
and the remark “odd” indicates that the total number of maximal cliques in that graph is

odd. Note that none of the graphs in Figure 5 is hamiltonian, but each has a 2-factor.



Theorem 8 [BFR99| Let G be a 2-connected graph.

(1) If G is CPsr-free, then G is either hamiltonian or cl(G) € Fi.

(it) If G is CZy-free, then G is either hamiltonian or G € {P311,P3371,P333, Py}, 0T
CZ(G) € Fs.

(iit) If G is C Ny o-free, then G is either hamiltonian or cl(G) € F3.

(@@ ”S (Q . D (o]

(o)
odd odd
G G *
Fi F F3
Figure 5

With this result we can give easy and straightforward proofs to three results on forbidden

subgraph conditions that imply the existence of 2-factors.

Theorem 9 If G is a 2-connected CPy-free graph of order n > 3, then G has a 2-factor.

Proof: By Theorem 8 (i), either G is hamiltonian or cl(G) € F;. In the first case G has a
2-factor and in the second case cl(G) has a 2-factor. However, by Theorem 5, G also has a

2-factor. This completes the proof of Theorem 9. O

Theorem 10 If G is a 2-connected CZy-free graph of order n > 3, then G has a 2-factor

unless G is of order 9 and G = L as in Figure 4.

Proof: By Theorem 8 (ii), either G is hamiltonian or G € {P3 77,337,333, Py} or
cl(G) € F. In each of the cases, both G and cl(G) have a 2-factor, except for the one graph
L = P33 3. This completes the proof of Theorem 10. O

10



Theorem 11 If G is a 2-connected CN(2,1,1)-free graph of order n. > 3, then G has a
2-factor.

Proof: By Theorem 8 (iii), either G is hamiltonian or ¢l(G) € F3. In the first case case G
has a 2-factor and in the second case ¢/(G) has a 2-factor. However, by Theorem 5 G also

has a 2-factor. This completes the proof of Theorem 11. O

Next we prove a similar result for CN (3, 1, 1)-free graphs. Note that in the special case of
CN(2,2,1)N(3,1,1)-free graphs, we can also get a simple proof from the results in [BFR99],
but the CN(3,1,1)-free case is not handled there.

Theorem 12 If G is a 2-connected CN(3,1,1)-free graph of order n > 3, then G has a
2-factor unless n =9 and G = L.

Proof: By Lemma 1, the only 2-connected claw-free graph of order n < 9 that does not have
a 2-factor is the N(3,1,1)-free graph L. Hence we can suppose that n > 10.

Let G be a 2-connected C'N(3,1,1)-free graph of order n > 10 having no 2-factor. By
Theorems 5 and 6, we can suppose G is closed. Thus, by Theorem 4, there is a triangle-free
graph H such that G = L(H) (we will also write H = L~ '(G)). Since G is CN (3,1, 1)-free, H
contains no subgraph (not necessarily induced) that is isomorphic to the graph L=!(N (3, 1,1))
(see Figure 6).

L7Y(N(3,1,1))

Figure 6

Note that G being 2-connected implies H is essentially 2-edge-connected, i.e., H has no
cutedge the removal of which results in a graph with at least two nontrivial components.
Also, by a result of Harary and Nash-Williams [HNW65], G is hamiltonian if and only if H

contains a dominating closed trail, i.e., a closed trail T' such that every edge of H has at

11



least one vertex on T'. In the proofs, we will use similar constructions to obtain 2-factors in

G = L(H).

The graph G cannot be hamiltonian and thus, by Theorem 7, G contains an induced
subgraph F' = P; j , € P. If one of the 4, j, k is at least 4, then F' (and hence also G) contains
an induced N(3,1,1,), hence each of the i, j, k is either 3 or T. Then the graph H contains
as a subgraph (not necessarily induced) a graph D isomorphic to L='(Ps33), L™ (Ps3.1),
Lt (P31,r) or Lt (Prrr). We will always refer to the vertices of these subgraphs as labeled

in Figure 7.
L™ (Ps33) L~ (P331) L~ (P3yr,r) L~'(Pr,rr)
a1 ai ai ai
dy d d dd b d d
do
a9 ao a9 a2
Figure 7

Case 1: D = L Y(P333). Since |E(D)| =9 and |V(G)| > 10, there is an edge zy € E(H) \
E(D) such that z € V(D). First suppose that y ¢ V(D). Then, up to a symmetry, z = a1
or x = by, but then in the first case the edges {a2bo,bob1, asda,dady, asca, cact, crar, a1y}
and in the second case the edges {a1b1,b1y,a1c1,c1c2,a1d1,d1da, daas, asbe} determine a
copy of L~Y(N(3,1,1)) in H. Hence all edges in E(H) \ E(D) have both ends in V(D).
By symmetry and since H is triangle-free, we can suppose £ = b; and y = cg, but then

(a1,¢1,c2,b1,b9,a9,ds,dy,ar) is a hamiltonian cycle in H, implying G = L(H) has a 2-factor.

Case2: D = L™Y(P337). Let 7y € E(H)\ E(D). If y ¢ V(D) and = € {a1,a2}, say,
x = ay, orif y ¢ V(D) and = € {by,by,c1,c2}, say, © = by, then {agbs, baby, asd,dd , ascs,
cact, crar, a1y} or {aiby, by, aid,dd  aici,cica, caaz, azby} gives an L~1(N(3,1,1)). Thus, d
is a cutvertex of H.

If there is a path P of length 3 outside D — d' with endvertex d, say, P = (d,u, ua,us)
(not excluding the possibility that d' € {uq,us,us}), then we have an L 1(N(3,1,1)) at

12



{a1b1,b1bs, a1c1, c1¢2, a1d, duy, uyus, ugus}, a contradiction. This immediately implies that
if z,y ¢ V(D — d'), then one of z,y (say, z) is adjacent to d. Since the removal of the
edge zd cannot separate zy from D, there is a path P = (uq,...,u) such that uy € {z,y},
ug € {d,d'} and ug,...,up_1 € V(H) \ V(D). But then in each of the possible cases we get
a path of length 3 outside D — d’ since H is triangle-free.

This implies that all edges in E(H) \ E(D) are incident to d or have both ends in V (D),
but then the cycle (ai, ¢y, c2,a2,be,b1,a1) together with the star centered at d determine two

cycles in G = L(H) that can be extended to a 2-factor of G.

Case 3: D = L Y(P3rr). Let again zy € E(H) \ E(D) and suppose that y ¢ V(D). Then
immediately = ¢ {a1,as}, for if e.g. = = ay, then {aad, dd’, asc, cc, asbe, babi, biar, a1y} gives
an L=Y(N(3,1,1)). Thus, a1, as have no neighbor outside D.

Suppose that zy is at distance 2 from D, and let zz € E(H) for some z € V(D) (note
that we already know that z ¢ {aj,as}). If z = by, then we have an L='(N(3,1,1)) at
{aad, dd',asc, cay,azbs, baby, byz, xy}, hence z # by. Symmetrically, z # bo. If 2 = d’, then we
have an L1 (N(3,1,1)) at {a1b1,b1bo, arc,caz,a1d,dd ,d'z,zy}, hence z # d' and, symmet-
rically, z # ¢/. Note that a symmetric argument implies that there is no edge between any of
z,y and ¢, d'.

By symmetry, it remains to consider the possibility z = d. For the sake of brevity,
we merge this possibility with the case that z = d’ (i.e., we suppose that z is adjacent to
d, not excluding the possibility z = d'). By the connectivity assumption, there is a path
P = (uy,...,u), k > 2, outside D with uy € {z,y} and v € {d,c}. If up = d, then k > 3 for
uy =y or k > 4 for u; = z (since H is triangle-free) and we get an L' (N(3,1,1)) in a way
similar to that in the case z = d’. Thus, u; = c¢. We distinguish the following possibilities.

Case L7Y(N(3,1,1))

ur =y, k>3 {dai,a1bi,das, asbe, dx, xy, yus, usus}
w =y, k=2 {dai,ai1b,das,asbs, dz, xy,yc,cc'}

w =z, k>4  {da,a1bi,das, asbe, dx, xus, usus, usu, }

u=z k=3 {day,a1b1,das, asby, dx, xus, usc, cc'}

Hence we have u; =z and k =2 (i.e., zc € E(H)) as the only remaining possibility.

13



We can summarize that if there is an edge vy € E(H) \ E(D) with y ¢ V (D), then there

are the following possibilities:

(i) xy is at distance 2 from D, x is adjacent to both ¢ and d, and y has no neighbor in D,

or
(ZZ) S {bl,bg,c, d}

Let B denote the set of all edges at distance 2 from D, and let z1y;1,xoyo € B. Then, by
(i), we have zi¢,zoc, x1d,x9d € E(H), but then {cas,asbs,cr1,1y1, cxe, x2d, day,a1by} is
an L7'(N(3,1,1)), unless x; = xo. Thus, if B # ), then there is a vertex x such that
ze,xzd € V(H) and every edge in B contains z. This implies that if B # (), then the cycle
(a1,b1,b9,a9,c,x,d,a1) contains at least one vertex of every edge of H and hence G = L(H) is
hamiltonian, and if B = (), then the cycle (a1, by, b2, as, ¢, a1) together with the star centered

at d correspond to cycles in G that can be extended to a 2-factor of G.

Case 4: D = L=Y(Prrr). Suppose there is an edge zy € E(H) \ E(D) at distance 2 from
D'=D—{V,d,d}, and x has a neighbor in D'.

First observe that neither z nor y can be adjacent to any of ay, ag, for ife.g. zay € E(H),
then {asb, bb', azc, cc', asd, day, a1z, vy} gives an L~ 1(N(3,1,1)) (where we suppose that y #
b’ and y # ¢, otherwise we interchange the roles of the b’s, ¢’s and d’s accordingly). We show
that there are two vertices u,v € {b,¢c,d} such that either zu,zv € E(H) or zu,yv € E(H).
By symmetry, suppose that b € E(H), but neither z nor y is adjacent to any of ¢,d (note
that we do not exclude the possibility that 2z = b'). By the connectivity assumption, there is
a path P = (uq,...,uy) such that u; € {z,y} and uy € {b,c,d}. If u = b, then for uy = =
we have k£ > 4, and for u; = y we have k£ > 3 since H is triangle-free. Then, in the first case
{a1d,das,aic,cc’; arb, bx, xug, uzus} and in the second case {a1d, das, aic, e, ar1b, bz, vy, yus}
gives an L 1(N(3,1,1)). Hence u, € {c,d}, say, up = c. By the assumption, neither z
nor y is adjacent to ¢, implying k& > 3. Then, in the first case the subgraph given by
{a1d,dd’,a1b,baz, aic, cup_1,up_1Ug_o,...,ry} contains an L~'(N(3,1,1)), and in the sec-

ond case {aid,dd ,ayc,cay,arb,bx, vy, yus} gives an L~1(N(3,1,1)).

For any {u,v} C {b,c,d} denote

14



B, ={z,y € E(H)| z,y ¢ V(D'),zu € E(H),zv € E(H)}, and

B2, ={z,y € E(H)| z,y ¢ V(D'),zu € E(H),yv € E(H)}.

We have shown that every edge zy with z,y ¢ V(D') belongs to some Bg’v (if some edge
belongs to more B{;’v’s, we choose one of them).

Let 2131 € B, ,, and z2y> € B, for some u,v € {b,¢,d}, say, u=band v = c. Then z1y,
and z5y2 have no vertex in common since H is triangle-free, but then {cas, aod, cx1, x1y1, cys,
Yoz, Tob,bar} is an L™Y(N(3,1,1)). This proves that for any {u,v} C {b,c,d}, at most one
of B}w, Bg’v is nonempty.

Next suppose that |BZ’U| > 2 for some {u,v} C {b,c,d}, say, u = b, v = ¢, and
let x1y1,z2y2 € BbQ’C. Then z; # ys and zo # y; since H is triangle-free, and then
{ey1, y111, caz, asd, cya, yaTa, Tab,bar} if 1 # x2, y1 # y2, or {azb,bay,axd,dd  asc, cyy,
y1z1, 1y} if 21 = T2, y1 # Yo, gives an L Y(N(3,1,1)) (the case 1 # x2, y1 = yo is
symmetric). Hence | B, | < 1 for any {u,v} C {b,c,d}.

Similarly, suppose |B}w| > 2 for some {u,v} C {b,c,d}, say, u = b, v = ¢, and let
T1Y1, Tolyo € Bbl’c. Again clearly 21 # yo and z9 # y; since H is triangle-free. If 21 # z9, then
{bz1,21y1, b2, T2Y2, ba1, a1d, dag, asc} for y1 # ya2, or {asc, car,asd,dd’, ash, bz, 1y1,y172}
for i1 = yy gives an L~ !(N(3,1,1)). This proves that for every nonempty B}M there is a

vertex Ty, such that z,,u, x40 € E(H) and every edge in B}L’v contains -

1
U

Specifically, for any {u,v} C {b,c,d}, either B, = B, = (), or exactly one of B
Bg’v is nonempty and there is a u,v-path P,, of length 2 or 3 such that P,, is internally

vertex-disjoint from D' and every edge in the B, , (B;,,) has at least one vertex on P,,. We

now have, up to symmetry, the following possibilities.

a) Bg’v = () for any {u,v} C {b,c,d} and j € {1,2}. Then the cycle (a1,b,a2,c,a1)
together with the star centered at d give two cycles in G that can be extended to a

2-factor of G.

b) Bg?c # 0 for some jo € {1,2}, Bg,d = Bg’d = () for all 7 € {1,2}. Then the cycle

(a1,b, Pye,c,a9,d,a1) gives a hamiltonian cycle in G.

c) Bg’lc # () and Bgfd # () for some j1,72 € {1,2}, Bg’d = () for all j € {1,2}. Then the

closed trail (a1, b, Py, ¢, P.g,d,as,c,a1) gives a hamiltonian cycle in G.
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d) BZ}C # 0, BZ;Zd # 0 and Bg?d # ( for some ji,72,73 € {1,2}. Then the closed trail

(b, Py, ¢, Poq,d,a1,b, Pyg,d,as,b) gives a hamiltonian cycle in G.
This completes the proof of Theorem 12. O

We will next prove the following theorem which is another forbidden subgraph sufficient

condition for a graph to have a 2-factor.

Theorem 13 If G is a 2-connected graph of order n > 3 that is C-free and Cj-free for all
1> 6, then G has a 2-factor.

The following lemma will be useful in the proof of Theorem 13.

Lemma 2 Let k > 4 be an integer and let G be a graph that is C-free and C;-free for all
i > k. Then, cl(G) is also C-free and Cji-free for all i > k.

Proof: In [R97] is was shown that c/(G) is C-free. Suppose that G is not Cy-free for some
>k Let G=G1 <Gy < -+ <Gg =cl(G) be a sequence of graphs that yields the closure
cl(G). Assume that G, is the first graph in the sequence that yields the first induced cycle
C = (vy,ve,---,vp,v1) for some £ > k. Then, G,_1 has no induced cycles of length i > k, and
G, is obtained from G,_; by replacing the connected neighborhood N of a vertex z; € G,_1
by a complete graph on N. The cycle C and the complete graph induced by N have precisely
two vertices and the edge between them in common, which without loss of generality is vivs,
since C' would be induced in G,_; if there were no edges and C' would not be induced in
G, if there were at least two edges. Thus, z; is adjacent to precisely v; and vy in G,_; and
v1ve € E(G,_1). This implies that C* = (v, z;,v2,- -+, vs,v1) is an induced cycle in G,_1, a

contradiction. This completes the proof of Lemma, 2. O

Proof: (of Theorem 13) By Lemma 2 and Theorem 5 we can assume that G is closed.
Therefore by Theorem 4 there is a triangle-free graph H such that G = L(H). Since any
cycle of length p in H determines an induced cycle of length p in GG, the only cycles in H
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are of length 4 and 5. There is no cutedge e of H such that H — e has two components
each containing an edge, since this would imply that G is not 2-connected. Thus, the only
cutedges of H are pendant edges, and the deletion of the pendant edges of H results in a
2-edge connected graph H* with only cycles of length 4 and 5.

It is sufficient to show that H* contains a (not necessarily connected) spanning subgraph

F such that
(i) dp(z) is even for every z € V(H™),

(17) the set {z € V(H*)| drp(z) = 0} is independent in H* (i.e., every edge of H* has at

least one vertex in a nontrivial component of F').

Indeed, if F' is such a subgraph, then every nontrivial component of F' yields a cycle in G.
For every vertex z with dr(z) = 0 which is contained in an edge in E(H) \ E(H*), we have
dp(z) > 3 and hence the star in H centered at z gives a cycle of length at least 3 in G. By

the condition (i7), this system of cycles can be extended to a 2-factor of G.

Obviously, it is sufficient to show the existence of such a subgraph in every block of H*,
hence we can suppose that H* is 2-connected.

If H* contains no (%5, then H* is bipartite. In fact, H* is complete bipartite, since the
existence of nonadjacent vertices in opposite parts of a 2-connected bipartite graph implies
the existence of a cycle of length at least 6. Thus, in addition, H* is isomorphic to a K s for
some s > 2, and the existence of F' is straightforward.

Thus, H* contains a cycle D = Cy. Set D = (vy,v9,v3,v4,05,v1), and let u € V(H*) \
V(D). Since H* is 2-connected, there are two internally vertex-disjoint paths from u to two
distinct vertices of D. Then, the only possibility that does not imply the existence of a cycle
of length at least 6 is that both paths are of length 1 and their endvertices are nonconsecutive
on D. By symmetry, we can suppose that uvv; € E(H*) and uvs € E(H*).

If there is an edge ujug € E(H*) such that u,us ¢ V(D), then, by the previous obser-
vation, both u; and us must have two nonconsecutive neighbors on D, but this immediately
implies the existence of a cycle of length at least 6 (note that the neighbors of u,us on D
must be distinct since H* is triangle-free). Hence the set V/(H*) \ V(D) is independent in

H* and the existence of F' follows. O
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Note that the graph L = P53 3 shows that Theorem 13 cannot be extended to 7 > 7.

With Theorem 13 and the following technical lemma we will be prepared to prove an
additional sufficient forbidden subgraph condition for the existence of a 2-factor using a

generalized bull.

Lemma 3 Let G be a 2-connected claw-free graph of order n >3, D = (vi,v2,--+,0p,v1) an
induced cycle of length p > 6, S the vertices of G a distance 1 from D, and T the vertices of
G a distance at least 2 from D. The following is true for G.

(1) S can be partitioned into p sets S; such that each vertex in S; is adjacent to v; and v;yq

but not v;_1.
(11) Each set S; induces a complete subgraph of G.
(iii) A vertex in S; with an adjacency in T is adjacent to precisely v; and vy in D.
(iv) For any S' C S, the graph spanned by D U S’ is hamiltonian.

(v) If T =0, then G is hamiltonian.

Proof: No vertex u of S can be adjacent to vertex v; of D and non-adjacent to both v;
and v;y1, since that would give a claw centered at v; in D. Also, no vertex u of S can be
adjacent to all of the vertices of D, since this would give a claw centered at u. Thus, there
must be some ¢ such that uv,—; ¢ E(G), but wv;,uv;y1 € E(G). Thus, u € S;. Of course,
it is possible that u could be in some other S;, but if this occurs, arbitrarily choose one of
them. This gives a partition of S.

If up,us € S;, then to avoid a claw centered at v; implies uyug € E(G). Thus, S; must
span a complete subgraph. If a vertex w € S; has an adjacency in T, then to avoid a claw
cannot be adjacent to 2 independent vertices of D. Hence, u has precisely 2 adjacencies in
D, and they are v; and v;41.

Since each §; is complete, there is a path Q; from v; to v;11 that contains all of the vertices

of §;NS’. A hamiltonian cycle can be formed from the paths Q1,Q2,- -, Qp, which implies
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that the graph spanned by D U S’ is hamiltonian. If T = (), then G = D U S is hamiltonian

by the argument of the previous paragraph. This completes the proof of Lemma 3. O

Theorem 14 If G is a 2-connected CB(4,1)-free graph of order n. > 3, then G has a 2-factor

unless n =9 and G = L.

Proof: By Lemma 1, the only 2-connected claw-free graph of order n < 9 that does not
have a 2-factor is the B(4,1)-free graph L. Hence we can assume that n > 10. Also, by
Theorem 13 there must be a cycle of length at least 6. We will assume that G does not have
a 2-factor and show that this leads to a contradiction.

Assume the notation of Lemma 3 and let D be an induced cycle of maximum length, say
p. In the case when T' = (), a contradiction is reached since G is hamiltonian by Lemma 3.
Hence we can assume that T # ().

We will first show that the cycle D has at most 6 vertices, so assume that p > 7. There
is a vertex u of distance 2 from D, and with no loss of generality we can assume we have
the path P = (u,u',v1) with '/ € S;. This gives an induced B(4,1) with the vertices
{u,u',v1,v9,v3,v4,v5,v6}. This contradiction implies that p = 6.

No vertex u; of T can be a distance 5 from D. For example, assume that P = (u1, us, us,
u4,us5,v1) is such a distance path and that us € S;. Then, there is an induced B(4,1) using
the vertices {uq,us,us, uq, us,v1,v9,v3}. Hence, we can assume that all vertices in T are a
distance at most 4 from D. For 1 <i <6 and 2 < j <4 let Tj; be the vertices of T' that are
a distance j from D such that one of the distance paths to D contains a vertex in S;. Each
vertex in 7" is in some Tj;. For each i let S} be the vertices of S; that are adjacent to a vertex
of T. Consider the graph induced by S] U Tia U Ti3 U Ti4. If S| consists of a single vertex,
then T'9 is complete since G is claw-free. If there is a vertex w € T2 and vertices u1,uz € S|
such that wu; € E(G) but wuy ¢ E(G), then there is an induced B(4, 1) using the vertices
{w, u1,u2,v9,v3,v4,v5,v6}. This gives a contradiction that implies that each vertex in T is
adjacent to all of the vertices of S7, and so Tis is also complete. The exact same argument
applies for Ti3 relative to T1o and for T74 relative to T73 as well. Thus we can conclude for
all + and j that each T;; is complete and there are complete bipartite graphs between T;3 and

T;4, between Tjy and Tj3 and also between S; and Tjs.
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Consider the case when there is a w; € Tjs and a wgy € T39. Let u; and ug be
vertices in S} and S% respectively. Then, there is an induced B(4,1) using the vertices
{ws, us, v3,v4,v5,v6,v1,u1 }, unless either ujug € E(G) or wyws € E(G). To avoid an in-
duced claw, uyuz € E(G) implies that u;ws € E(G), and hence we can assume that ws € T}s.
Consequently, each vertex in T3 is also in 773, and each vertex in T34 is also in T74. By sym-
metry, we further have Tsy C To, Ts3 C T13 and T54 C T14. The same argument applied for
i = 2 gives Tj; C Tb; for i = 4,6 and j = 2,3,4. We have shown that the vertices of T' are
partitioned into 6 sets (some could be empty), namely T = T U Ti3 U T4 U Tho U Tog U Thy.

Also, observe that if u; € S} and uy € S, then ujus & E(G), since this implies the exis-
tence of an induced cycle of length 7, namely, the cycle (u1,u2, v3, v4,v5, vg, v1,u1). Likewise,
no vertex of S U T2 UTi3 U Ty is adjacent to any vertex of S5 U Thy U Ths U Thy.

Our next objective is to show that the vertices of T can be covered by a system of vertex
disjoint cycles that are disjoint from the cycle D. This will verify that G has a 2-factor,
since the cycle D can be expanded to a cycle that contains the remaining vertices of G by
Lemma 3.

By the 2-connectedness of G, T;; # () implies |T;; )| > 2 for i = 1,2 and j = 3,4. This
immediately implies there is a cycle that covers all of Tjo U T;3 U Ty if Tjz # 0, 1 = 1,2. If
T;3 = () and |Tjo U S}| > 3, then there is a cycle spanning the set Tjo U S;. Hence we are left
with the cases that either Tj3 = () or |Tj2| = |Si| =1, i = 1,2, and at least one of Tyo, Tho is
nonempty (otherwise we are done by Lemma 3).

Suppose that T # 0 and set T1o = {w1} and S7 = {u1}. By the connectivity assumption,
wy must be adjacent to a vertex uy € S, for some i’ # 1. We already know that 7' ¢ {2,6}. If
i’ = 3, then we must have ujuz € E(G) to avoid the induced cycle (w1, us, v4, v5, Vg, V1, U1, Wy )
of length 7, but then there is the triangle (uy,us,wi,u1). The case i = 5 is symmetric and
hence it remains to consider the case ' = 4. Then, by a symmetric argument (in which S}
plays the role of S7) we conclude that |S)| = 1. Set S} = {u4}.

Now, if Thy # 0, say, Tho = {wo} and S4 = {uy}, then, by the same argument we get that
wy is adjacent to a us € St and S§ = {us}, but then there is a cycle of length greater than
6, namely (u1,ws,uq, vs, us, we, ug, vo,u1) if ugus ¢ E(G), or (u1,wy, uq, us, wa, Uz, Vo, uy) if

ugus € E(G), respectively. This contradiction proves that Thy = () and we conclude that
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T =Ty ={w}.

Suppose Sy # 0 and let ug € Sy. To avoid the B(4,1) induced by {w1,u4,v4,v5, ve,v1,
v2, U2}, we must have ugvy € E(G). Hence all vertices in Sy are adjacent to v4, implying there
is a cycle that covers all of Sy U S5 U{vs,v3,v4}, and this cycle together with a cycle obtained
by applying Lemma 3 to the cycle (u1, w1, uq,v5,v6,v1,u1) gives a 2-factor in G. Hence we
get So = 0, and, similarly, S5 = S5 = Sg = . Finally, if there is a vertex u € S7 \ S}, then
the set {v3,va,u,v1,vg,vs5, uq, w1 } induces a B(4,1). Hence S1 \ S| = 0 and, symmetrically,
Sy \ Sy = 0. This implies that G is isomorphic to the graph L = Pj 33, contradicting the

assumption that n > 10. O

Theorem 2 is an immediate consequence of Theorems 3, 9, 10, 12, and 14.

Remark. Note that Theorem 2 can be stated in a slightly stronger form, since all 2-connected
graphs of order n > 3 that satisfy the forbidden subgraph conditions have a 2-factor except
for a very limited number of graphs. In the case of claw-free graphs the only exception is the
graph L = P53 3 in Figure 3. In the case of K 4P;-free graphs it is straightforward to verify

that there are only 8 exceptions, namely the graphs
H + (Kz UKj U Kk),

whereHngor?Qand1§i§j§k§2.

References

[Be9l] P. Bedrossian, Forbidden Subgraph and Minimum Degree Conditions for
Hamiltonicity, Ph.D Thesis, Memphis State University, 1991

[B98] J. Brousek, Minimal 2-Connected Non-Hamiltonian Claw-Free Graphs, Discrete
Math. 191 (1998), 54-46.

[BFR99] J. Brousek, O. Favaron, and Z. Ryjacek, Forbidden Subgraphs, Hamiltonicity and
Closure in Claw-Free Graphs, Discrete Math. 196 (1999), 143-155.

[BSR99] J. Brousek, Z. Ryjacek, and I. Schiermeyer, Forbidden Subgraphs, Stability, and
Hamiltonicity, Discrete Math. 197/198 (1999), 143-155.

21



[D52] G. Dirac, Some Theorems on Abstract Graphs, Proc. London Math. Soc. 2 (1952),
69-81.

[CL96] G. Chartrand and L. Lesniak, Graphs and Digraphs, Chapman and Hall, London,
(1996).

[F96] R. J. Faudree, Forbidden Subgraphs and Hamiltonian Properties - A Survey, Congres-
sus Numerantium 116 (1996), 33-52.

[FFRI7] R. J. Faudree, E. Flandrin, and Z. Ryjicek, Claw-Free Graphs - A Survey, Discrete
Math. 164 (1997), 87-147.

[FG97] R. J. Faudree and R. J. Gould, Characterizing Forbidden Pairs for Hamiltonian
Properties, Discrete Math. 173 (1997), 45-60.

[FGy99] R. J. Faudree and A. Gyéarfds, Extremal Problems for Fobidden Pairs that Imply
Hamiltonicity, Discussiones Mathematicae - Graph Theory 19 (1999), 13-29.

[HNW65] F. Harary and C. St.J.A. Nash-Williams, On Eulerian and Hamiltonian Graphs
and Line Graphs, Canad. Math. Bull. 8 (1965), 701-709.

[MS84] M. M. Matthews and D. P. Sumner, Hamiltonian Graphs in K 3-free Graphs,
J. Graph Theory 8 (1984), 139-146.

[R97] Z. Ryjacek, On a Closure Concept in Claw-Free Graphs, J. Combin. Theory Ser. B
70 (1997), 217-224.

[RSS99] Z. Ryjacek, A. Saito, and R. Schelp Closure, 2-Factors and Cycle Coverings in
Claw-Free Graphs, J. Graph Theory 32 (1999), 109-117.

22



