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Abstract

We generalize a known sufficient condition for the traceability of a
graph to a condition for the existence of a spanning tree with a bounded
number of leaves. Both of the conditions involve neighborhood unions.
Further, we present two results on spanning spiders (trees with a single
branching vertex). We pose a number of open questions concerning ex-
tremal spanning trees.

1 Introduction

There are several well-known conditions ensuring that any sufficiently ‘dense’
graph is traceable (admits a Hamilton path). Viewing a Hamilton path as an
‘extremal’ spanning tree (one with only two leaves), one may ask for similar
conditions ensuring the existence of a spanning tree with at most m leaves.
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An early result of this type by Las Vergnas [9] gives a degree condition that
guarantees that any forest in G of limited size and with a limited number of
leaves can be extended to a spanning tree of G whose number of leaves is also
limited in an appropriate sense. Specifically, this result implies as a corollary
that G has a spanning tree with at most m leaves provided that

02(G) >n—m+1

(we refer to Section 2 for the definition of the parameter o04(G) and other
notation).

An alternative way of generalizing traceability is to bound the number of
branching vertices (vertices of degree at least 3) in a spanning tree, for a Hamil-
ton path is just a tree with no branchings. Following [7]|, we call a spanning
tree with at most one branching vertex a spanning spider and remark that the
investigation of this sort of spanning trees was catalyzed by problems in the
construction of optical networks. Yet another related constraint on spanning
trees is an upper bound on the maximum degree. Sufficient conditions for the
existence of extremal spanning trees of the above types have been studied e.g.
in [1], [7], [8] or [12].

Gargano et al. [7] prove a sufficient condition for a graph G without an
induced K3 to admit a spanning tree with a bounded number of branching
vertices. The result subsumes known conditions for the traceability of such a
graph G from [10] and [11]:

Theorem 1 [7] If a graph G with no induced K3 satisfies 0y13(G) > n —
k — 2, then G admats a spanning tree with at most k branching vertices.

The following ‘neighborhood union’ condition for traceability is an easy
consequence of a similar condition for hamiltonicity of 2-connected graphs from
[2] (see also [5]):

Theorem 2 Any connected graph G with n vertices and N»(G) > 2(n — 2)
15 traceable.

The first result of the present paper is a generalization of this statement
that applies to spanning trees with at most m leaves:

Theorem 3 Let G be a connected graph with n vertices and let m > 2 be
an wnteger. If

N,.(G) > -(n—m),

m+1
then G has a spanning tree with at most m leaves.
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A proof is given in Section 3. It is easy to see that the condition is sharp:
just consider the graph (m+ 1)K}, + K, consisting of m +1 cliques of size k+1,
all sharing a vertex and otherwise disjoint.

In Section 4, we turn to spanning spiders and give two sufficient conditions
for the existence of a spanning spider centered at a prescribed vertex. The
conditions are sharp (the first one up to an additive constant) and involve
‘localized’ versions of the parameter oy.

2 Notation

We shall deal with simple undirected graphs. We write V(G) for the vertex set
and E(QG) for the edge set of a graph G.

As usual, the neighborhood N(X) of a set X C V(G) is defined to be the
set of all vertices with at least one neighbor in X. We write N(v) for N({v}).
The degree of a vertex v is denoted by d(v). Let k > 1 an integer. We define

0x(G) = min > d(v),

vel

Ni(G) = min|N(D),

where in both cases, I ranges over sets of £ independent vertices in G. Thus,
01(G) = Ni(G) is the minimum degree of G. In general, we have Ni(G) <

Let T be a tree and v,w € V(T). The unique path between v and w in
T will be denoted by [v, w]. We shall often make use of the following notion,
illustrated in Fig. 1. The predecessor u~ of a vertex u € V(T') — {v} relative
to v is the neighbor of u in [v,u]. (For brevity, the vertex v is not indicated
by the notation, but it will be always clear from the context.) Intuitively, u—
is the vertex that is ‘one step closer’ to v than w is. If U C V(T') — {v}, we set
U-={u :ueU}.

U2

Ug

— U1
U Uy

Figure 1: Predecessors of u; and wu, relative to v.



We use the standard notation for paths. A path on vertices z,,...,zx is
written as z;...z,. If =,y are vertices of a path P, then zPy denotes the
subpath of P with endvertices £ and y. The concatenation of two paths is
represented by the concatenation of the corresponding sequences. For instance,
the sequence z PyzQw (where z,y, z, w are vertices and P, Q are paths) denotes
the path that starts at z, follows P as far as y, uses the edge yz, and finally
follows @ as far as w. (Of course, we are assuming here that the result of the
concatenation is indeed a path, rather than a walk with self-intersections.)

3 Spanning trees with few leaves

We shall make use of the following well-known lemma. We include a proof for
convenience.

Lemma 4 For any graph G and k > 1,

0,41(G) o 9x(G)

k+1 — k

Proof. Let I C V(G) be an independent set of k£ + 1 vertices whose degrees
sum up to ox,1(G), and let b be a vertex whose degree is maximal in I. For a
set X C V(G), let a(X) denote the average degree of vertices in X. Clearly,
a(l —b) <a(I) =0x11(G)/(k+ 1), while on the other hand, a(I — b) is at least
0r(G)/k since I — b is independent. The lemma follows. O

We can now proceed to the proof of the main result of this section.

Proof of Theorem 3. The result is well known for m = 2 (the case of a
Hamilton path), so we may assume m > 3.

Let T be a tree in G with at most m leaves such that it spans as many vertices
of G as possible, and (subject to this condition) it has the least possible number
of leaves. We assume that 7' is not spanning, and choose a vertex z, ¢ V(T').

If T had fewer than m leaves, then we could extend it to some vertex in its
neighborhood without making the number of leaves exceed m. We may thus
assume that 7" has exactly m leaves z,...,Z,.

We begin by noting that the set X = {zo,...,Z,} is independent. Indeed,
an edge between two vertices in X would allow us to either extend T to z,, or
to decrease the number of leaves of T', contradicting in both cases the extremal
property of T'.

We shall now prove, in several steps, the following estimate on the neigh-
borhood sizes for the sets X — zy:

IN(X —z)| < n—d(z) —m (1)
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for all kK = 0,...,m. The proof of (1) is given for k € {0, 1}; observe that the
remaining cases are analogous to the case £ = 1 since the leaves z,, ..., z,, play
a role symmetric to that of z;.

The predecessor of a vertex v € V(T') was defined in Section 2. In this
proof, all predecessors will be relative to the vertex z;. Thus, v~ denotes the
predecessor of a vertex v € V(T') — {z;} relative to z;. (It should be noted that
when proving (1) for k£ > 1, one has to work with predecessors relative to zy.)

Claim 1 We have
IN(zx) | = [N(zx)]

for k=0,1.

First, let £ = 0. Since z; is not contained in N(z,), all we need to show is
that the mapping v — v~ is injective. Assuming v~ = w~, extend T to cover
Zo by replacing the edge vv~ by vz, and wz,. The resulting tree has m leaves
and spans more vertices.

It remains to prove the claim for £k = 1. For every neighbor v of z;, the
predecessor v~ must have degree at most 2 in 7. Otherwise, the tree obtained
by replacing vv~ with vz; has fewer leaves than 7. The injective property of
the mapping v — v~ follows.

Before proceeding to the next claim, define a vertex v € N(zy) to be min-
vmal if v is contained in the path [z;,w] for all w € N(z). (See Fig. 2 for an
illustration.)

Figure 2: Among the vertices a,b,c € N(zy), the vertex a is minimal, while b
and c are not.

Claim 2 For k = 0,1 and any vertez v € N(z;) which is not minimal, we
have v- ¢ N(X —zx)U X.

Assume v € N(zy). It is easy to see that v~ ¢ X. Indeed, the only vertex v
with v~ € X is the unique neighbor z7 of z; in T, and this vertex is necessarily
minimal.



Thus, we aim to prove that v— ¢ N(X — z;). Assume, to the contrary,
that v~ € N(z;), where ¢ # k. (The argument is illustrated in Fig. 3.) We
distinguish two cases: £k = 0 and k = 1. First, suppose £ = 0. By the non-
minimality of v, we may choose some z € N(z;) such that v is not contained
in [z;,2]. Form a new tree 7" from T by adding the vertex z, and replacing
the edge vv~ with edges vzy and zoz. Since v and z are clearly in different
components of T'—vv~, T" is indeed a tree. Note that it may have one leaf more
than T since the degree of v~ decreased. The addition of z,v~ to T” creates
a unique cycle C. By our assumption that m, the number of leaves of T', is
at least 3, it follows that 7" is not a path, and so C contains a vertex w with
dr(w) > 3. Remove one of the edges of C incident with w from 7" + z,v~ to
obtain a tree T". It is easy to see that 7" has at most m leaves while it covers
more vertices than 7T, a contradiction.

Z;

(a) The tree T'. (b) The tree T".

Figure 3: An illustration to the proof of Claim 2 (k = 0).

If k =1, we form 7" by replacing vv~ with vz; in T'. By the same argument
as above, T" is a tree with at most m leaves. The addition of the edge z;v—
to T" creates a unique cycle C unless ¢« = 0, in which case we have extended T'
to a tree with at most m leaves spanning more vertices. For 7z > 1, remove an
edge e € E(C) incident with a vertex of degree 3 to get a tree 7" with at most
m — 1 leaves, spanning all of V(T'). This contradiction concludes the proof of
Claim 2.

Claim 3 The intersection of N(zx)~ and N(X — zx) U X contains at most
one vertex for k =10,1.



By Claim 2, if v~ € N(zx)” N (N(X — zx) U X), then v must be minimal.
It is easy to see that there is at most one minimal vertex in N(zx) (k = 0,1):
if v and u' are both minimal, then u € [z;, '] and ' € [z1,u], and so u = u'.
This proves Claim 3.

We now show that Claim 3 implies (1). Clearly,

IN(ze) |+ |N(X —zx) UX| <n+1.

Furthermore, the size of N(X —z;)UX equals |[N(X — z)|+m+1. By Claim 1,
|N(z1)"| = d(z1). Combining these facts together, the case £ = 1 of inequality
(1) follows. As regards k = 0, if z has d' neighbors outside T, then |N(zo) |
is only d(zo) — d'. On the other hand, we can include the d' neighbors in the
total sum as none of them is in N(X —zy), so the result is the same. Thus, (1)
is established.

It is now easy to finish the argument. By the independence of X, we have
|IN(X — zi)| > N,,(G) for all k. Furthermore, the sum of the degrees of vertices
in X is at least 0,,1(G). It follows that summing (1) over £k = 0, ..., m, we
get

(m + 1)Np(G) < (m + 1)n — 0p11(G) — m(m + 1),

and so

_ Om11(G) e m<n— om(G)

Nn(G)<n <
m+1 m

)

by Lemma 4. However, it is clear that N,,(G) < 0,,(G), and so the above yields

N, (G) < —2

which contradicts the hypothesis of the theorem. It follows that the tree T
spans all of V(G) and the proof is finished. O

4 Spanning spiders

Recall from Section 1 that a tree T' is a spider if it has at most one branching
vertez (vertex whose degree in T exceeds 2). The spider T is centered at v
(where v € V(T)) if none of its vertices, except possibly for v, are branching.
It follows that T' is centered at a unique vertex, unless 7" is a path, in which
case it is considered as centered at each vertex. If T is a spider centered at v,
than a branch (or leg) of T is any path from v to a leaf of T'. (If T is a path,
this notion depends on the choice of the ‘central’ vertex, which will always be
clear from the context.)



Since a spanning tree with at most 3 leaves is necessarily a spanning spider,
we have already proved one result on spiders: the case m = 3 of Theorem 3. In
this section, we prove two results concerning the existence of a spanning spider
with a prescribed center u. Each of them gives a sufficient condition based on
a ‘localized’ version of the o}, parameter.

For a vertex u € V(G) and a positive integer &, define

0p(G) =min ) d(v)
I er
with I ranging over vertex sets of size k such that 7 U {u} is independent.

In the following result, the parameter o} (G) is simply the minimum degree

of a vertex non-adjacent to wu.

Theorem 5 Let G be a graph of order n. Then for any vertez u € V(G),
there exists a spider in G centered at u and spanning all vertices w of G
with d(w) > n — d(u).

In particular, if 0} (G) > n—d(u), then G has a spanning spider centered
at u.

Proof. Let W be the set of all vertices w satisfying d(w) > n — d(u). Fix
a spider S centered at w that covers the maximum number of vertices from
W and, subject to this condition, S has as few branches as possible. If S
spans W then we are done, so assume this is not the case and take any vertex
w e W —V(S). Let m be the number of branches of S.

All predecessors (see Section 2) considered in this proof will be in the tree
S and relative to u. We retain the notation =z~ for the predecessor of z €
V(S) — {u}.

Assume that v has a neighbor v such that v~w is an edge of G, and that v
is contained in a branch P of S with endvertex z. Replacing P by two branches
P, = yvPz and P, = uPv~w, we obtain a spider spanning more vertices, which
is a contradiction. Thus, if we let A be the set of the d(u) —m neighbors of u (in
G) which are non-adjacent to u in S, then their predecessors are non-adjacent
to w in G and they are pairwise distinct.

There are some further vertices which are non-adjacent to w, but are not
found in A™: namely, all the leaves of S and the vertex u. Taking into account
A~ and the possibility that u itself is a leaf, we have found d(u) vertices non-
adjacent to w, so that d(w) < n — d(u), contradicting the assumption. Hence
S spans W.

As for the second half of the theorem, the o} condition implies the existence
of a spider S that is centered at w and spans all non-neighbors of u. It is easy
to extend S to a spanning spider. O



As a corollary, we obtain the following sufficient condition for the existence
of a spanning spider in terms of the minimum degree §(G) and the maximum
degree A(G) of the graph G.

Corollary 6 If a connected graph G of order n satisfies §(G) + A(G) > n,
then 1t admits a spanning spider.

The following example shows that the first half of Theorem 5 is sharp.
Consider the complete bipartite graph K,, ;2 with the larger partite class
denoted by B; and the smaller one by B,. Choose a vertex w in B;. No
spanning spider S has u as the center, since each branch of S would contain
at least as many vertices from B, as from B; — u, and on the other hand,
|B1 — u| > |Bs|. Now this also implies that no spider with center u covers all
vertices of degree at least n—d(u) = m+2, since such a spider would necessarily
be spanning. The same example shows that the second half of Theorem 5 is
sharp up to a small additive constant.

Theorem 7 Let u be a verter of a connected graph G on n wvertices. If
03(G) > n —1, then G has a spanning spider centered at u.

Proof. Take a spider S centered at u with the maximum number of vertices
and, subject to this condition, the maximum number of branches. Assuming S
does not span G, we may choose w ¢ V(S) with a neighbor v' in S since G is
connected. Clearly uw ¢ E(G), so we may let v be the endvertex of the branch
P of S containing v'. Note that v is adjacent neither to w (since otherwise we
could extend S to w) nor to u (since we could replace the edge incident with v
in S by uv, increasing the number of branches). It follows that X = {u, v, w}
is an independent set.

In this argument, we shall consider predecessors in S relative to v. For
z € Ng(w), denote by =™ the unique vertex whose predecessor relative to v is
z. This is well-defined since w is adjacent neither to u nor to any leaf of S. For
z € N(w) —V(S), we put z© = z. Setting N(w)* ={z" : z € N(w)}, we aim
to show that N(v) N N(w)" = 0.

Thus let z € N(w) with 2* € N(v) as illustrated in Fig. 4. Clearly, z €
V(S), for otherwise we could use the edge vz to extend S to a spider spanning
more vertices. If z € V(P), then the replacement of P with uPz"vPzw extends
S to w without changing the number of branches. If z is on some branch
Q # P (ending with, say, y), then we may replace Q with uQzw and P with
uPvztQy, increasing the number of vertices in the spider. This shows that
N(v) and N(w)* are disjoint as desired.
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(a) The case z € V(P). (b) The case z ¢ V(P).

Figure 4: An illustration to the proof of Theorem 7. The modified spiders are
shown in bold.

Now since |N(w)*| = d(w), |N(v)| = d(v), and the vertices u and v are in
neither of the sets, we obtain d(v)+d(w)+2 < n, or equivalently, d(v) +d(w) <
n — 2. This contradicts our hypothesis. O

The bound in Theorem 7 is sharp. For the graph K,, ,,;2 and the vertex u
from the example given for Theorem 5, one has 0¥ (K, mi2) =2m =n — 2.

5 Problems

We conclude with several open questions. The first of them is a variant of
Theorem 3 for graphs of larger connectivity in the spirit of the well-known
hamiltonicity condition of Fraisse [6].

Problem 8 Is it true that if G is a xK-connected graph and

m+k—1
Nm K— G)> ——- - )
)

then G has a spanning tree with at most m leaves?

It is not hard to see that an affirmative answer to this question would
generalize the following theorem of Win [13] (conjectured by M. Las Vergnas),
which in turn extends the well-known result of Chvatal and Erdés [4] that every
k-connected graph G with independence number a(G) < k + 1 has a Hamilton
path:

Theorem 9 Every k-connected graph G has a spanning tree with at most
a(G) — k + 1 leaves.

10



The following conjecture has been stated in [7]:

Proposition 10 Any connected graph G with 0x.2(G) > n — 1 has a span-
ning tree with at most k branch vertices.

Theorem 1 shows that 0., may be replaced with o3 for K, s-free graphs,
and an example in [7] proves that the bound in the theorem does not hold
for graphs that may contain induced K;3;. On the other hand, the following
possibility does not seem to be ruled out.

Problem 11 Is there a constant C = C(k) such that every connected graph G
with 05,3(G) > n + C has a spanning tree with at most £ branch points?

Another question inspired by Theorem 1 is the following.

Problem 12 Does every connected K; 4-free graph G with 04(G) > n contain
a spanning spider with at most three branches?

It seems plausible that one could find density conditions for the existence
of a spanning spider with at most one ‘long’ leg:

Problem 13 Find a degree condition for the existence of a spanning spider all
of whose legs, except possibly one, consist of a single edge.

Proposition 10 shows that any graph with minimum degree no less than n/3
admits a spanning spider. If the graph is assumed 2-connected, it is likely that
smaller degrees will ensure the existence of a spanning spider. We propose the
following question.

Problem 14 Does every 2-connected graph with n vertices and minimum de-
gree at least n/6 possess a spanning spider?

Finally, it is natural to ask if there is an analogue of the well-known Bondy—
Chvatal closure [3] for spanning trees with few leaves.

Problem 15 Does there exist a function c¢(m) of m such that ¢(m) < 1 and
the following holds: Given any pair of non-adjacent vertices z,y of a graph G
with d(z) + d(y) > c(m) - n, the graph G has a spanning tree with at most m
leaves if and only if the graph G + zy (obtained by adding the edge zy to G)
has one?

11



Acknowledgment

We are indebted to the anonymous referees for their helpful comments. We also
thank Aung Kyaw who brought Theorem 9 to our attention.

References

1]

2]

3]

[10]

[11]

[12]

M. Aung and A. Kyaw. Maximal trees with bounded maximum degree in
a graph. Graphs Combin. 14 (1998), 209-221.

D. Bauer, G. Fan and H. J. Veldman. Hamiltonian properties of graphs
with large neighborhood unions. Discrete Math. 96 (1991), 33—49.

J. A. Bondy and V. Chvéatal. A method in graph theory. Discrete Math.
15 (1976), 111-135.

V. Chvatal and P. Erdés. A note on Hamiltonian circuits. Discrete Math.
2 (1972), 111-113.

R. J. Faudree, R. J. Gould, M. S. Jacobson and R. H. Schelp. Neighborhood
unions and hamiltonian properties in graphs. J. Combin. Theory Ser. B
47 (1989), 1-9.

P. Fraisse. A new sufficient condition for Hamiltonian graphs. J. Graph
Theory 10 (1986), 405-409.

L. Gargano, M. Hammar, P. Hell, L. Stacho and U. Vaccaro. Spanning
spiders and light-splitting switches. Discrete Math. 285 (2004), 83-95.

A. Kyaw. A sufficient condition for a graph to have a k-tree. Graphs Com-
bin. 17 (2001), 113-121.

M. Las Vergnas. Sur une propriété des arbres maximaux dans un graphe,
C. R. Acad. Sci. Paris Série A 272 (1971), 1297-1300.

Y. Liu, F. Tian and Z. Wu. Some results on longest paths and cycles in
K, s-free graphs. J. Changsha Railway Inst., 4 (1986), 105-106.

M. M. Matthews and D. P. Sumner. Longest paths and cycles in K, ;-free
graphs. J. Graph Theory 9 (1985), 269-277.

V. Neumann Lara and E. Rivera-Campo. Spanning trees with bounded
degrees. Combinatorica 11 (1991), 55-61.

12



[13] S. Win. On a conjecture of Las Vergnas concerning certain spanning trees
in graphs. Result. Math. 2 (1979), 215-224.

13



