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An early result of this type by Las Vergnas [9] gives a degree condition thatguarantees that any forest in G of limited size and with a limited number ofleaves can be extended to a spanning tree of G whose number of leaves is alsolimited in an appropriate sense. Speci�cally, this result implies as a corollarythat G has a spanning tree with at most m leaves provided that�2(G) � n�m+ 1(we refer to Section 2 for the de�nition of the parameter �k(G) and othernotation).An alternative way of generalizing traceability is to bound the number ofbranching vertices (vertices of degree at least 3) in a spanning tree, for a Hamil-ton path is just a tree with no branchings. Following [7], we call a spanningtree with at most one branching vertex a spanning spider and remark that theinvestigation of this sort of spanning trees was catalyzed by problems in theconstruction of optical networks. Yet another related constraint on spanningtrees is an upper bound on the maximum degree. SuÆcient conditions for theexistence of extremal spanning trees of the above types have been studied e.g.in [1], [7], [8] or [12].Gargano et al. [7] prove a suÆcient condition for a graph G without aninduced K1;3 to admit a spanning tree with a bounded number of branchingvertices. The result subsumes known conditions for the traceability of such agraph G from [10] and [11]:
Theorem 1 [7] If a graph G with no induced K1;3 satis�es �k+3(G) � n �k � 2, then G admits a spanning tree with at most k branching vertices.The following `neighborhood union' condition for traceability is an easyconsequence of a similar condition for hamiltonicity of 2-connected graphs from[2] (see also [5]):
Theorem 2 Any connected graph G with n vertices and N2(G) > 23(n� 2)is traceable.The �rst result of the present paper is a generalization of this statementthat applies to spanning trees with at most m leaves:
Theorem 3 Let G be a connected graph with n vertices and let m � 2 bean integer. If Nm(G) > mm+ 1 � (n�m);then G has a spanning tree with at most m leaves.2



A proof is given in Section 3. It is easy to see that the condition is sharp:just consider the graph (m+1)Kk+K1, consisting of m+1 cliques of size k+1,all sharing a vertex and otherwise disjoint.In Section 4, we turn to spanning spiders and give two suÆcient conditionsfor the existence of a spanning spider centered at a prescribed vertex. Theconditions are sharp (the �rst one up to an additive constant) and involve`localized' versions of the parameter �k.
2 NotationWe shall deal with simple undirected graphs. We write V (G) for the vertex setand E(G) for the edge set of a graph G.As usual, the neighborhood N(X) of a set X � V (G) is de�ned to be theset of all vertices with at least one neighbor in X. We write N(v) for N(fvg).The degree of a vertex v is denoted by d(v). Let k � 1 an integer. We de�ne�k(G) = minI Xv2I d(v);Nk(G) = minI jN(I)j;where in both cases, I ranges over sets of k independent vertices in G. Thus,�1(G) = N1(G) is the minimum degree of G. In general, we have Nk(G) ��k(G).Let T be a tree and v; w 2 V (T ). The unique path between v and w inT will be denoted by [v; w]. We shall often make use of the following notion,illustrated in Fig. 1. The predecessor u� of a vertex u 2 V (T )� fvg relativeto v is the neighbor of u in [v; u]. (For brevity, the vertex v is not indicatedby the notation, but it will be always clear from the context.) Intuitively, u�is the vertex that is `one step closer' to v than u is. If U � V (T )� fvg, we setU� = fu� : u 2 Ug.
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Figure 1: Predecessors of u1 and u2 relative to v.3



We use the standard notation for paths. A path on vertices x1; : : : ; xk iswritten as x1 : : : xk. If x; y are vertices of a path P , then xPy denotes thesubpath of P with endvertices x and y. The concatenation of two paths isrepresented by the concatenation of the corresponding sequences. For instance,the sequence xPyzQw (where x; y; z; w are vertices and P;Q are paths) denotesthe path that starts at x, follows P as far as y, uses the edge yz, and �nallyfollows Q as far as w. (Of course, we are assuming here that the result of theconcatenation is indeed a path, rather than a walk with self-intersections.)
3 Spanning trees with few leavesWe shall make use of the following well-known lemma. We include a proof forconvenience.
Lemma 4 For any graph G and k � 1,�k+1(G)k + 1 � �k(G)k :
Proof. Let I � V (G) be an independent set of k + 1 vertices whose degreessum up to �k+1(G), and let b be a vertex whose degree is maximal in I. For aset X � V (G), let a(X) denote the average degree of vertices in X. Clearly,a(I � b) � a(I) = �k+1(G)=(k+1), while on the other hand, a(I � b) is at least�k(G)=k since I � b is independent. The lemma follows. 2We can now proceed to the proof of the main result of this section.
Proof of Theorem 3. The result is well known for m = 2 (the case of aHamilton path), so we may assume m � 3.Let T be a tree inG with at mostm leaves such that it spans as many verticesof G as possible, and (subject to this condition) it has the least possible numberof leaves. We assume that T is not spanning, and choose a vertex x0 =2 V (T ).If T had fewer than m leaves, then we could extend it to some vertex in itsneighborhood without making the number of leaves exceed m. We may thusassume that T has exactly m leaves x1; : : : ; xm.We begin by noting that the set X = fx0; : : : ; xmg is independent. Indeed,an edge between two vertices in X would allow us to either extend T to x0, orto decrease the number of leaves of T , contradicting in both cases the extremalproperty of T .We shall now prove, in several steps, the following estimate on the neigh-borhood sizes for the sets X � xk:jN(X � xk)j � n� d(xk)�m (1)4



for all k = 0; : : : ;m. The proof of (1) is given for k 2 f0; 1g; observe that theremaining cases are analogous to the case k = 1 since the leaves x2; : : : ; xm playa role symmetric to that of x1.The predecessor of a vertex v 2 V (T ) was de�ned in Section 2. In thisproof, all predecessors will be relative to the vertex x1. Thus, v� denotes thepredecessor of a vertex v 2 V (T )�fx1g relative to x1. (It should be noted thatwhen proving (1) for k > 1, one has to work with predecessors relative to xk.)
Claim 1 We have jN(xk)�j = jN(xk)jfor k = 0; 1.First, let k = 0. Since x1 is not contained in N(x0), all we need to show isthat the mapping v 7! v� is injective. Assuming v� = w�, extend T to coverx0 by replacing the edge vv� by vx0 and wx0. The resulting tree has m leavesand spans more vertices.It remains to prove the claim for k = 1. For every neighbor v of x1, thepredecessor v� must have degree at most 2 in T . Otherwise, the tree obtainedby replacing vv� with vx1 has fewer leaves than T . The injective property ofthe mapping v 7! v� follows.Before proceeding to the next claim, de�ne a vertex v 2 N(xk) to be min-imal if v is contained in the path [x1; w] for all w 2 N(xk). (See Fig. 2 for anillustration.)
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xkFigure 2: Among the vertices a; b; c 2 N(xk), the vertex a is minimal, while band c are not.
Claim 2 For k = 0; 1 and any vertex v 2 N(xk) which is not minimal, wehave v� =2 N(X � xk) [X.Assume v 2 N(xk). It is easy to see that v� =2 X. Indeed, the only vertex vwith v� 2 X is the unique neighbor x+1 of x1 in T , and this vertex is necessarilyminimal. 5



Thus, we aim to prove that v� =2 N(X � xk). Assume, to the contrary,that v� 2 N(xi), where i 6= k. (The argument is illustrated in Fig. 3.) Wedistinguish two cases: k = 0 and k = 1. First, suppose k = 0. By the non-minimality of v, we may choose some z 2 N(x0) such that v is not containedin [x1; z]. Form a new tree T 0 from T by adding the vertex x0 and replacingthe edge vv� with edges vx0 and x0z. Since v and z are clearly in di�erentcomponents of T�vv�, T 0 is indeed a tree. Note that it may have one leaf morethan T since the degree of v� decreased. The addition of xiv� to T 0 createsa unique cycle C. By our assumption that m, the number of leaves of T , isat least 3, it follows that T 0 is not a path, and so C contains a vertex w withdT 0(w) � 3. Remove one of the edges of C incident with w from T 0 + xiv� toobtain a tree T 00. It is easy to see that T 00 has at most m leaves while it coversmore vertices than T , a contradiction.
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(b) The tree T 00.Figure 3: An illustration to the proof of Claim 2 (k = 0).If k = 1, we form T 0 by replacing vv� with vx1 in T . By the same argumentas above, T 0 is a tree with at most m leaves. The addition of the edge xiv�to T 0 creates a unique cycle C unless i = 0, in which case we have extended Tto a tree with at most m leaves spanning more vertices. For i > 1, remove anedge e 2 E(C) incident with a vertex of degree 3 to get a tree T 00 with at mostm� 1 leaves, spanning all of V (T ). This contradiction concludes the proof ofClaim 2.
Claim 3 The intersection of N(xk)� and N(X � xk) [X contains at mostone vertex for k = 0; 1. 6



By Claim 2, if v� 2 N(xk)� \ (N(X � xk) [ X), then v must be minimal.It is easy to see that there is at most one minimal vertex in N(xk) (k = 0; 1):if u and u0 are both minimal, then u 2 [x1; u0] and u0 2 [x1; u], and so u = u0.This proves Claim 3.We now show that Claim 3 implies (1). Clearly,jN(xk)�j+ jN(X � xk) [Xj � n+ 1:Furthermore, the size of N(X�xk)[X equals jN(X � xk)j+m+1. By Claim 1,jN(x1)�j = d(x1). Combining these facts together, the case k = 1 of inequality(1) follows. As regards k = 0, if x0 has d0 neighbors outside T , then jN(x0)�jis only d(x0) � d0. On the other hand, we can include the d0 neighbors in thetotal sum as none of them is in N(X �x0), so the result is the same. Thus, (1)is established.It is now easy to �nish the argument. By the independence of X, we havejN(X � xk)j � Nm(G) for all k. Furthermore, the sum of the degrees of verticesin X is at least �m+1(G). It follows that summing (1) over k = 0; : : : ;m, weget (m+ 1)Nm(G) � (m+ 1)n� �m+1(G)�m(m+ 1);and so Nm(G) � n� �m+1(G)m+ 1 �m � n� �m(G)m �m;by Lemma 4. However, it is clear that Nm(G) � �m(G), and so the above yieldsNm(G) � mm+ 1(n�m);which contradicts the hypothesis of the theorem. It follows that the tree Tspans all of V (G) and the proof is �nished. 2

4 Spanning spidersRecall from Section 1 that a tree T is a spider if it has at most one branchingvertex (vertex whose degree in T exceeds 2). The spider T is centered at v(where v 2 V (T )) if none of its vertices, except possibly for v, are branching.It follows that T is centered at a unique vertex, unless T is a path, in whichcase it is considered as centered at each vertex. If T is a spider centered at v,than a branch (or leg) of T is any path from v to a leaf of T . (If T is a path,this notion depends on the choice of the `central' vertex, which will always beclear from the context.) 7



Since a spanning tree with at most 3 leaves is necessarily a spanning spider,we have already proved one result on spiders: the case m = 3 of Theorem 3. Inthis section, we prove two results concerning the existence of a spanning spiderwith a prescribed center u. Each of them gives a suÆcient condition based ona `localized' version of the �k parameter.For a vertex u 2 V (G) and a positive integer k, de�ne�uk (G) = minI Xv2I d(v)with I ranging over vertex sets of size k such that I [ fug is independent.In the following result, the parameter �u1 (G) is simply the minimum degreeof a vertex non-adjacent to u.
Theorem 5 Let G be a graph of order n. Then for any vertex u 2 V (G),there exists a spider in G centered at u and spanning all vertices w of Gwith d(w) > n� d(u).In particular, if �u1 (G) > n�d(u), then G has a spanning spider centeredat u.
Proof. Let W be the set of all vertices w satisfying d(w) � n � d(u). Fixa spider S centered at u that covers the maximum number of vertices fromW and, subject to this condition, S has as few branches as possible. If Sspans W then we are done, so assume this is not the case and take any vertexw 2 W � V (S). Let m be the number of branches of S.All predecessors (see Section 2) considered in this proof will be in the treeS and relative to u. We retain the notation x� for the predecessor of x 2V (S)� fug.Assume that u has a neighbor v such that v�w is an edge of G, and that vis contained in a branch P of S with endvertex z. Replacing P by two branchesP1 = uvPz and P2 = uPv�w, we obtain a spider spanning more vertices, whichis a contradiction. Thus, if we let A be the set of the d(u)�m neighbors of u (inG) which are non-adjacent to u in S, then their predecessors are non-adjacentto w in G and they are pairwise distinct.There are some further vertices which are non-adjacent to w, but are notfound in A�: namely, all the leaves of S and the vertex u. Taking into accountA� and the possibility that u itself is a leaf, we have found d(u) vertices non-adjacent to w, so that d(w) � n � d(u), contradicting the assumption. HenceS spans W .As for the second half of the theorem, the �u1 condition implies the existenceof a spider S that is centered at u and spans all non-neighbors of u. It is easyto extend S to a spanning spider. 2 8



As a corollary, we obtain the following suÆcient condition for the existenceof a spanning spider in terms of the minimum degree Æ(G) and the maximumdegree �(G) of the graph G.
Corollary 6 If a connected graph G of order n satis�es Æ(G) + �(G) � n,then it admits a spanning spider.The following example shows that the �rst half of Theorem 5 is sharp.Consider the complete bipartite graph Km;m+2 with the larger partite classdenoted by B1 and the smaller one by B2. Choose a vertex u in B1. Nospanning spider S has u as the center, since each branch of S would containat least as many vertices from B2 as from B1 � u, and on the other hand,jB1 � uj > jB2j. Now this also implies that no spider with center u covers allvertices of degree at least n�d(u) = m+2, since such a spider would necessarilybe spanning. The same example shows that the second half of Theorem 5 issharp up to a small additive constant.
Theorem 7 Let u be a vertex of a connected graph G on n vertices. If�u2 (G) � n� 1, then G has a spanning spider centered at u.
Proof. Take a spider S centered at u with the maximum number of verticesand, subject to this condition, the maximum number of branches. Assuming Sdoes not span G, we may choose w =2 V (S) with a neighbor v0 in S since G isconnected. Clearly uw =2 E(G), so we may let v be the endvertex of the branchP of S containing v0. Note that v is adjacent neither to w (since otherwise wecould extend S to w) nor to u (since we could replace the edge incident with vin S by uv, increasing the number of branches). It follows that X = fu; v; wgis an independent set.In this argument, we shall consider predecessors in S relative to v. Forx 2 NS(w), denote by x+ the unique vertex whose predecessor relative to v isx. This is well-de�ned since w is adjacent neither to u nor to any leaf of S. Forx 2 N(w)� V (S), we put x+ = x. Setting N(w)+ = fx+ : x 2 N(w)g, we aimto show that N(v) \N(w)+ = ;.Thus let z 2 N(w) with z+ 2 N(v) as illustrated in Fig. 4. Clearly, z 2V (S), for otherwise we could use the edge vz to extend S to a spider spanningmore vertices. If z 2 V (P ), then the replacement of P with uPz+vPzw extendsS to w without changing the number of branches. If z is on some branchQ 6= P (ending with, say, y), then we may replace Q with uQzw and P withuPvz+Qy, increasing the number of vertices in the spider. This shows thatN(v) and N(w)+ are disjoint as desired.9
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(b) The case z 62 V (P ).Figure 4: An illustration to the proof of Theorem 7. The modi�ed spiders areshown in bold.Now since jN(w)+j = d(w), jN(v)j = d(v), and the vertices u and v are inneither of the sets, we obtain d(v)+d(w)+2 � n, or equivalently, d(v)+d(w) �n� 2. This contradicts our hypothesis. 2The bound in Theorem 7 is sharp. For the graph Km;m+2 and the vertex ufrom the example given for Theorem 5, one has �u2 (Km;m+2) = 2m = n� 2.
5 ProblemsWe conclude with several open questions. The �rst of them is a variant ofTheorem 3 for graphs of larger connectivity in the spirit of the well-knownhamiltonicity condition of Fraisse [6].
Problem 8 Is it true that if G is a �-connected graph andNm+��1(G) � m+ �� 1m+ � � (n�m);then G has a spanning tree with at most m leaves?It is not hard to see that an aÆrmative answer to this question wouldgeneralize the following theorem of Win [13] (conjectured by M. Las Vergnas),which in turn extends the well-known result of Chv�atal and Erd}os [4] that every�-connected graph G with independence number �(G) � �+1 has a Hamiltonpath:
Theorem 9 Every �-connected graph G has a spanning tree with at most�(G)� �+ 1 leaves. 10



The following conjecture has been stated in [7]:
Proposition 10 Any connected graph G with �k+2(G) � n� 1 has a span-ning tree with at most k branch vertices.Theorem 1 shows that �k+2 may be replaced with �k+3 for K1;3-free graphs,and an example in [7] proves that the bound in the theorem does not holdfor graphs that may contain induced K1;3. On the other hand, the followingpossibility does not seem to be ruled out.
Problem 11 Is there a constant C = C(k) such that every connected graph Gwith �k+3(G) � n+ C has a spanning tree with at most k branch points?Another question inspired by Theorem 1 is the following.
Problem 12 Does every connected K1;4-free graph G with �4(G) � n containa spanning spider with at most three branches?It seems plausible that one could �nd density conditions for the existenceof a spanning spider with at most one `long' leg:
Problem 13 Find a degree condition for the existence of a spanning spider allof whose legs, except possibly one, consist of a single edge.Proposition 10 shows that any graph with minimum degree no less than n=3admits a spanning spider. If the graph is assumed 2-connected, it is likely thatsmaller degrees will ensure the existence of a spanning spider. We propose thefollowing question.
Problem 14 Does every 2-connected graph with n vertices and minimum de-gree at least n=6 possess a spanning spider?Finally, it is natural to ask if there is an analogue of the well-known Bondy{Chv�atal closure [3] for spanning trees with few leaves.
Problem 15 Does there exist a function c(m) of m such that c(m) < 1 andthe following holds: Given any pair of non-adjacent vertices x; y of a graph Gwith d(x) + d(y) > c(m) � n, the graph G has a spanning tree with at most mleaves if and only if the graph G + xy (obtained by adding the edge xy to G)has one? 11
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