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Abstract

In 1987, Akers, Harel and Krishnamurthy proposed the star graph
Y (n) as a new topology for interconnection networks. Hamiltonian
properties of these graphs have been investigated by several authors.
In this paper, we prove that ¥(n) contains |n/8| pairwise edge-disjoint
Hamilton cycles when n is prime, and Q(n/loglogn) such cycles for
arbitrary n.

1 Introduction

A multicomputer system has nodes that communicate by exchanging mes-
sages through an interconnection network. The topology of this network can
be conveniently modeled by an undirected graph whose properties determine
how efficiently the system can function. In such a system, the order of the
graph (the number of its nodes) is pre-determined, while its size (the number
of interconnections) is affected by cost and the physical characteristics of the
Processors.

In systems where all nodes have the same characteristics, the intercon-
nection design calls for a regular graph. Further obvious desired properties
of these graphs include the following:

e Fault tolerance: high connectivity.

e Fast communication: small diameter.
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e Symmetry: vertex- and edge-transitivity.
e Recursive structure.

Another desired property is the presence of a Hamilton cycle, or multiple
edge-disjoint Hamilton cycles, which increases fault tolerance and plays an
important role in many parallel algorithms, such as broadcasting, gossiping
or sorting.

The search for disjoint Hamilton cycles in graphs is an active and popular
area in graph theory. Recently, this search was carried over to the design of
network topologies. The n-cube (a classical interconnection network) is an
n-regular graph with 2" vertices and diameter n. In other words, the degree
and diameter of the n-cube are logarithmic in the number of its vertices. The
n-cube also has a recursive structure and a Hamiltonian decomposition, i.e.,
| 5] pairwise edge-disjoint Hamilton cycles. It became a kind of benchmark
against which other topologies are compared. In particular, the Hamiltonian
properties of various alternatives to the n-cube topology have been investi-
gated by a number of authors. For instance, in [2,3,12], multiple disjoint
Hamilton cycles are constructed in various tori and in the de Bruijn networks.
Micheneau [10] studies disjoint Hamilton cycles in recursive circulant graphs,
which were proposed as a new topology for multicomputer networks in [11].
Another recent topology is the locally twisted cube introduced in [19], in
which the search for disjoint Hamilton cycles is still going on.

The star-graph topology (defined in the next section) was introduced
in 1986 by Akers et al. [1]. Comparing the star-graph topology to the n-
cube, the authors concluded that similar desired properties on networks of
comparable size are achieved by star graphs with smaller degrees (fewer in-
terconnections) and smaller diameter. As noted above, the n-cube is known
to have many edge-disjoint Hamilton cycles. The corresponding question for
the star graph was not addressed in [1].

In this paper, we prove that star graphs too have multiple edge-disjoint
Hamilton cycles. More precisely, our main result is the following theorem:

Theorem 1. (i) If n is a prime, then X(n) contains |n/8| pairwise edge-
disjoint Hamilton cycles.

(ii) For arbitrary n, there are Q(n/loglogn) pairwise disjoint Hamilton
cycles in X(n).

It is likely that star graphs are Hamiltonian decomposable (this was shown
in [7] to be true for ¥(5), a 4-regular graph of order 120).



2 Definitions, notation and background

In this paper, we use common graph-theoretical definitions and notation. The
symmetric group S, is the group of permutations of order n. Since we use
modular arithmetic extensively, we prefer to use Z,, = {0,...,n — 1} as the
underlying set on which the permutations are defined. To each permutation
7, we associate its representing word [w] = w(0)...7(n — 1).

Throughout this paper, we write o for the group operation in §,, and

define
(coT)(i) = o(7(i)).

Observe that if 7 is a permutation and (7, j) a transposition, then the rep-
resenting word of (i,j) o 7 is obtained from that of m by interchanging the
symbols ¢ and j. Similarly, the representing word |7 o (4, j)] is obtained from
[7] by interchanging the symbols at positions i and j (counting from 0).

Definition 1. Given a group I’ and a subset X C I such that X = X1, the
Cayley graph Cay(T', X) is the graph with vertex set I" whose edges join g to
gx forallgel and x € X.

Thus, the Cayley graph Cay(T', X) is an |X|-regular graph of order |T|.
In the symmetric group &, any transposition (7, ) is its own inverse, and
thus any set of transpositions X C §,, defines a Cayley graph Cay(S,, X).
We are now ready to define the star graph:

Definition 2. The star graph X(n) is the Cayley graph Cay(S,, Xo) where
Xo=1{(0,1),(0,2),...,(0,n— 1)} C S,.

The star graph ¥(n) is (n — 1)-regular and bipartite, with one color class
consisting of the even permutations and the other color class of the odd ones.
Note that the edges of ¥(n) connect permutations whose representing words
differ by the transposition of the leading symbol with some other symbol.

The star graph X(4) is shown in Figure 1. (Vertex labels in this and
similar figures are the representing words of the associated permutations.)

An arbitrary generating set Y of transpositions in §,, may be conveniently
represented by a graph on Z,, with an edge ij for each transposition (i,j) € Y.
This justifies the term ‘star graph’ since the graph representing X is a star
(see Figure 2a). Analogously, we may define the path graph, II(n), as the
Cayley graph

II(n) = Cay(S,, {(0,1),(1,2),...,(n—2,n—1)})

where the generating set is a path on Z, (Figure 2b). The graph I1(4) is
shown in Figure 3.
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Figure 1: The star graph ¥(4).
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Figure 2: The generating sets of (a) ¥(n) and (b) II(n).

Hamiltonian properties of path graphs are well-studied, albeit under a
different name: permutation Gray codes. In fact, a permutation Gray code
is nothing but a Hamilton cycle in II(n). Put in a more traditional way, it is
a list of all permutations of length n, such that no permutation is repeated
and neighboring permutations differ by a transposition of adjacent entries.
The first results on the existence of such a Gray code were due to Johnson [§]
and Trotter [18] (see also [17]) who produced an explicit algorithm to find
one, the celebrated Johnson—Trotter algorithm. (For background on various
types of combinatorial Gray codes, we refer the reader to the excellent survey
by Savage [15]. More information on permutation Gray codes may be found
in [16].)
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Figure 3: The path graph I1(4).




Results on the existence of Hamilton cycles in path graphs are generalized
by the following theorem of Kompel’'makher and Liskovets [9]:

Theorem 2. Let X be any generating set of transpositions in S,, where
n > 3. Then Cay(S,, X) is Hamiltonian.

In particular, we may replace the path representing the generating set of
[I(n) by any tree on Z, and still obtain a Hamiltonian Cayley graph. We
remark that it is an open problem whether Cay(S,, X) is Hamiltonian for
any generating set X of involutions (see, e.g., [13]).

Theorem 2 implies that the star graphs ¥(n) (n > 3) are Hamiltonian, but
more can be said about their Hamiltonian properties. As in [6], a bipartite
graph G is said to be strongly Hamiltonian-laceable if every two vertices x,y
are joined by a Hamilton path if they are from distinct color classes, and
by a path of length |V (G)| — 2 if they are from the same color class. The
following result was proved in [6]:

Theorem 3. For every n > 4, the star graph 3(n) is strongly Hamiltonian-
laceable.

3 Disjoint Hamilton cycles in star graphs

Throughout this section, we assume that n > 5.

For i € {1,...,|n/2]}, let C*(n) be the set of all edges o7 of ¥(n) such
that ¢(0) — 7(0) is congruent to £i modulo n. It is easy to observe the
following (the inner and outer cycles in Figure 1 may be a helpful illustration
for n = 4):

Observation 4. The graph C*(n) is a 2-factor of X(n).

We remark that a similar property holds for C7(n) if n > 2j, but we will
not need this.

Lemma 5. If F is a cycle of C*(n) and i, j € {0,...,n — 1} distinct integers,
then F' contains ezxactly one vertex m with 7(0) =i and m(n — 1) = j.

Proof. Start at any vertex p = po of F' and let k = py(0). Follow F to p; :=
(k,k+1)op (recall that (k,k+1) denotes a transposition) and continue along
F through (say) p2, ps, . ... The change at each step is that p;11(0) = p;(0)+1
and there is exactly one ¢ such that p;1(¢) = p;(¢) — 1; all other values of
pir1 are the same as in p;. Moreover, the value at ¢ will not change for the
n — 2 permutations following p;,1(¢). This implies that

pi(j) = pign-1(J) +1
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for all j € Z,,. A consequence of this is that for any i, p; = pitnn-1), and in
fact it is easy to see that |F| = n(n — 1).

Observe that as i increases, p;(n — 1) is always constant for a block of
n — 1 steps and then drops by one. Within the block, p;(0) takes all the
n — 1 possible values different from p;(n — 1). It follows that we eventually
encounter a permutation 7 = p; such that 7(0) =4 and m(n — 1) = j. Since
|F| = n(n — 1), this cannot happen more than once. O

Note that by this lemma, the length of each cycle of C'(n) is n(n — 1)
and hence there are (n — 2)! such cycles.

Secondly, Lemma 5 implies that every cycle F' of C'*(n) contains a unique
vertex m with m(n — 1) = n —1 and 7(0) equal to a given k € {0,...,n — 2}.
We let this vertex be denoted by o*(F). Furthermore, we call ¢°(F) the
signature of F. If 7 is the signature of a cycle F' of C1(n), we write just 7"
for o®(F).

Observation 6. Let F be a cycle of C'(n) with signature o and 0 < k <

n — 2. The vertex o* is given by
k if1=0,
(i) =< o(i)—1 ifi>1 and o(i) <k,
o(i) otherwise.

Lemma 7. Let 0 € S, be a signature and let 7 = (k,k + 1) o o, where
1 <k<n—3. Then 7 is also a signature and the following holds:

(i) " = (k- 1,k+1) oo™ !,

(ii) o*=1 and T are joined by an edge in C*(n), and the same holds for

of 1l and TF1.

Proof. The permutation 7 is a signature since 7(0) = 0 and 7(n—1) = n—1.
We prove (i). By Observation 6 applied to 751, we see that

(k+1  ifi=0,

o(i)—1 ifi>1and o(i) <k—1,

G = k if o(i) = k,
k-1  ifoli)=k+1,
Lo (?) otherwise.

1

Comparing this with the statement of Observation 6 for 0¥, we see that

7ol = (K — 1,k + 1) o 0*! as claimed.
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To prove (ii), observe that o*~! and 7% = (k — 1,k + 1) o 071 are
joined by an edge in X(n) since the latter permutation may be written as
o%=10(0,1), where o*1(i) = k + 1. This edge belongs to C?*(n) since k — 1
and k + 1 differ by 2. The second part of (ii) follows similarly from (i) with
the roles of o and 7 reversed. O

Let C''?(n) be the spanning subgraph of 3(n) with edge set C''(n)UC?(n).
Furthermore, let C'2/*(n) be the graph obtained from C'?(n) by contracting
each cycle of C'(n) to a single vertex, discarding all loops and replacing
multiple edges by single edges. Somewhat surprisingly, C'*!(n) contains a
spanning copy of II(n — 2), as shown by the following lemma.

Lemma 8. For any permutation m of length n — 2, define a permutation 7™
of length n by setting

0 if i =0,
@)= i—-1)+1 ifi=1,...,n—2,
n—1 ift=mn—1.

Let ¢ be the mapping from I(n — 2) to C'*/1(n) sending each vertex 7 to
the vertex corresponding to the cycle of CY(n) with signature 7. Then the
following holds:

(i) ifp=mo(k—1,k), where 1 <k <n-—3, then p" is adjacent to 7!
in C*(n),

(ii) @ is an isomorphism of I1(n — 2) with a spanning subgraph of C'?/1(n).

Proof. (i) Let p = mo (k — 1,k). It is straightforward to verify that p =
(k,k + 1) o7. Thus, the claim follows from Lemma 7(ii).

(i) If 7 and p are adjacent vertices of II(n — 2), then by (i), ¢(r) and
¢(p) are adjacent in C'?/1(n). Hence ¢ is an injective homomorphism. Since
the graphs in question have the same number of vertices, ¢ has the stated
property. L]

Can we use a Hamilton cycle H in II(n — 2) (which is known to exist) and
Lemma 8 to build up a Hamilton cycle in C'?(n)? It turns out that we can,
provided that H satisfies an additional constraint. Let us call H a doubly
adjacent Gray code if for every vertex m of II(n — 2), the two neighbours
of m on H can be written as mo (k — 1,k) and 7o (k,k + 1) for some k €
{1,...,n —4}. By a deep result of Compton and Williamson [5] (see also [4]),
doubly adjacent Gray codes exist in all path graphs except the trivial cases
I1(1) and II(2) (see Figure 4 for an illustration):
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Figure 4: A doubly adjacent Gray code in I1(4) (bold).

Theorem 9 ( [5]). For every m > 3, the path graph II(m) admits a doubly
adjacent Gray code.

With Theorem 9, it is not difficult to derive the following:
Lemma 10. For n > 5, the graph C'*(n) is Hamiltonian.

Proof. Let F = my,...,mxy—1 be a doubly adjacent Gray code in II(n — 2),
where N = (n —2)!. Fixi e {0,...,N —1}. We have that m; = m;_; o (k —
1, k) for some k € {1,...,n — 3} (indices modulo N). Moreover, one of the
following cases hold:

(a) mip1 =mo(k,k+1)and k <n—4,
(b) iy =mo(k—2,k—1)and k > 2.

In each case, we define a subpath P; of the desired Hamilton cycle in ¥(n);
informally, P; will be used as the replacement for the edge m;m;11 of F'. Let
D; be the cycle of C*(n) with signature 7; (using the notation of Lemma 8).

Furthermore, let us call 7;**! the reference vertex of D;.
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Figure 5: The path P; (bold) in cases (a) and (b) in the proof of Lemma 10.
The reference vertices are circled.

In case (a), we let P; start in the reference vertex of D;, continue through
T2 along D; as far as 7%, and then follow the edge 7;*m;1**2 of C?(n)
(which exists by Lemma 7). See Figure 5 for an illustration. In case (b),
P; starts in the reference vertex of D;, follows D; through 7;* to 7;*2, and
takes the edge 7" 27"

Observe that the ending vertex of P; is, in both cases, the reference vertex
of D; 1. Since this is also the starting vertex of Py, all the paths P; may be
concatenated. Moreover, the resulting cycle in ¥(n) is Hamiltonian, because
each P; spans all of the cycle D;. O]

We can now proceed to the proof of our main result.

Proof of Theorem 1. We may clearly continue to assume (as we do through-
out Section 3) that n > 5. Let U C Z = {1,...,n — 1} be the set of elements
relatively prime to n. For technical reasons, we extend the definition of the
sets C%(n) to let i range over all of Z* by setting, fori=1,...,|(n —1)/2],

C~'(n) := C'(n).

(Throughout this proof, all arithmetic on the indices is performed modulo

Claim 1. If j € U, then C¥(n) U C?%(n) is Hamiltonian.
Define a permutation ¢ on V' by

(i) = ij mod n.
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The mapping 7 +— ¥ om on S, is an automorphism of 3(n) that carries each
edge set C(n) to C¥(n). Since we know that C''(n) U C?*(n) is Hamiltonian
by Lemma 10, the same follows for C7(n) U C?% (n). This proves the claim.
Thus, to prove the theorem, it suffices to find an appropriately large set
X C U such that for all z € X, the sets Q(z) = {z,—x,2z, -2z} are
pairwise disjoint. Define an undirected graph H on U whose edge set is

E(H) = {zy: =,y € U,z #y and Q(z) N Qy) # 0}

Claim 2. The mazimum degree A(H) of H is at most 9. If n is a prime
then A(H) <.

Note first that by elementary arithmetic, for any = € Z; there are at most
two z € Z; such that x = 2z. Moreover, if n is a prime, then there is exactly
one such z.

Let x be any vertex of H. Its neighbors are the three elements of Q(z) \
{z}, the at most four elements z with 2z = +x, and the at most two elements
2" with 22" = £22 besides z and —x. Thus, A(H) < 9. The improvement
for prime n comes from the fact that in this case, there are only two z such
that 2z = +x. The proof of the claim is complete.

We now prove part (i) of the theorem. Let n be a prime. Since A(H) <7,
one can employ the straightforward greedy method to find an independent
set X of size at least |(n —1)/8| = [n/8] in H. By the independence of X,
the sets Q(z) for x € X are pairwise disjoint and so there are |n/8] disjoint
Hamilton cycles corresponding to the elements of X.

Part (ii) is proved similarly: in this case, A(H) < 9 and we can find an
independent set X in H such that | X| > |U| /10 = ¢(n)/10, where ¢ is the
Euler function. By the results in [14, paragraph 1.8],

pln) = Q(@),

which implies that | X| is (n/loglog n) as well and the proof is complete. [J
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