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Abstract

We introduce a closure concept that turns a claw-free graph into the line graph of a
multigraph while preserving its (non-)Hamilton-connectedness. As an application,
we show that every 7-connected claw-free graph is Hamilton-connected, and we show
that the well-known conjecture by Matthews and Sumner (every 4-connected claw-
free graph is hamiltonian) is equivalent with the statement that every 4-connected
claw-free graph is Hamilton-connected. Finally, we show a natural way to avoid the
non-uniqueness of a preimage of a line graph of a multigraph, and we prove that
the closure operation is, in a sense, best possible.

1 Notation and terminology

In this paper, by a graph we mean a finite simple undirected graph G = (V(G), E(G));
whenever we allow multiple edges we say that G is a multigraph.

For a vertex x € V(G), dg(z) denotes the degree of x in G, Ng(x) denotes the
neighborhood of x in G (i.e. Ng(z) = {y € V(G)| vy € E(G)}) and Ng|x] denotes the
closed neighborhood of x in G (i.e. Ng[z] = Ng(x) U {zx}). For z,y € V(G), distg(z,y)
denotes the distance of x,y in G. A universal verter of G is a vertex that is adjacent
to all other vertices of G. By a clique we mean a (not necessarily maximal) complete
subgraph of G; a(G) denotes the independence number of G and x(G) denotes the (vertex)
connectivity of G. By the square of a graph G we mean the graph G* with V(G?) = V(G)
and E(G?) = {zy € V(G)| distg(z,y) < 2}).

If G, H are (multi-)graphs, then H C G or H INCD G means that H is a subgraph or an
induced subgraph of G, respectively, and H ~ G stands for the isomorphism of H and G.
The induced subgraph of G on a set M C V(G) is denoted (M ).
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A path with endvertices a,b will be referred to as an (a,b)-path. If P is a path and
u € V(P), then v~ and u™ denotes the predecessor and successor of uw on P. A path on
k vertices is denoted P.

For a graph G and a,b € V(G), p(G) denotes the length of a longest path in G, p,(G)
the length of a longest path in G with one endvertex at a € V(G), and p,(G) the length
of a longest (a, b)-path in G. A graph G is homogeneously traceable if, for any a € V(G), G
has a hamiltonian path with one endvertex at a (i.e., for any a € V(G), p.(G) = |V (G)]),
and G is Hamilton-connected if, for any a,b € V(G), G has a hamiltonian (a, b)-path (i.e.,
for any a,b € V(G), pur(G) = |V(G))).

A walk (in G) is a sequence of vertices ujus...u; such that wu;1 € E(G), i =
1,...,k —1. For a walk J = ujuy...ur we denote V(J) = {uy,us,...,ux} the corre-
sponding set of vertices, and |V (J)| = [{u1,ua, ..., ux}| (thus, |V (J)| = k if and only if
J is a path). Finally, G is claw-free if G does not contain an induced subgraph that is
isomorphic to the claw K 3.

For further concepts and notations not defined here we refer the reader to [4].

2 Introduction

A vertex x € V(G) is eligible if Ng(x) induces a connected noncomplete graph, and z is
simplicial if the subgraph induced by Ng(z) is complete. The local completion of G at a
vertex x is the graph G, obtained from G by adding all edges with both vertices in Ng(z)
(note that the local completion at x turns = into a simplicial vertex, and preserves the
claw-free property of G).

The closure cl(G) of a claw-free graph G is the graph obtained from G by recursively
performing the local completion operation at eligible vertices as long as this is possible.
We say that G is closed if G = cl(G).

The following was proved in [14]

Theorem A [14]. For every claw-free graph G:
(1) cl(G) is uniquely determined,
(17) cl(G) is the line graph of a triangle-free graph,
(#7i) cl(G) is hamiltonian if and only if G is hamiltonian.

Note that the fact that cl(G) is a line graph can be seen e.g. also from the well-known
Beineke’s characterization of line graphs in terms of forbidden induced subgraphs.

Theorem B [1]. A graph G is a line graph (of some graph) if and only if G does not
contain a copy of any of the graphs in Figure 1 as an induced subgraph.

A class C is stable if G € C implies cl(G) € C. A graph property 7 is stable in a stable
class C if, for any G € C, G has 7 if and only if cl(G) has 7.
Thus, Theorem A says that hamiltonicity is a stable property in the class of claw-free
graphs.

Zhan [17] proved the following.

Theorem C [17].  Every 7-connected line graph of a multigraph is Hamilton-connected.
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Figure 1

Using the fact that hamiltonicity is a stable property, combining Theorems A and C
the following was obtained.

Theorem D [14]. Every 7-connected claw-free graph is hamiltonian.

The line graph of the multigraph H in Figure 2 shows that Hamilton-connectedness is
not stable in 3-connected claw-free graphs (there is no hamiltonian (uq, us)-path in L(H),
where u1,us are the vertices of L(H) that correspond to the edges uq,us in H). Thus,
the closure technique does not give a similar result for Hamilton-connectedness

Figure 2

The existence of a connectivity bound for Hamilton-connectedness in claw-free graphs
was established by Brandt [5] who proved that every 9-connected claw-free graph is
Hamilton-connected. This result was later on improved by Hu, Tian and Wei [8] as
follows.

Theorem E [8]. Every 8-connected claw-free graph is Hamilton-connected.
In the same paper, Zhan’s result (Theorem C) was improved as follows.

Theorem F [8]. Let G be a 6-connected line graph of a multigraph with at most 29
vertices of degree 6. Then G is Hamilton-connected.



On the other hand, the following conjectures by Matthews and Sumner (Conjecture G)
and by Thomassen (Conjecture H) are still wide open.

Conjecture G [13].  Every 4-connected claw-free graph is hamiltonian.
Conjecture H [16].  Every 4-connected line graph is hamiltonian.

Note that Theorem A immediately implies that Conjectures G and H are equivalent.
More equivalent versions of these conjectures (among others, on cycles in cubic graphs),
can be found e.g. in [7].

Another equivalence was established by Kuzel and Xiong [10] (see also [11]), who
proved that Conjectures G and H are equivalent with the following statement.

Conjecture I [10]. Every 4-connected line graph of a multigraph is Hamilton-connected.
It is natural to pose the following question.
Conjecture J. Every 4-connected claw-free graph is Hamilton-connected.

For a similar reason as with the extension of Theorem D to Hamilton-connectedness,
the closure technique as introduced in [14] does not establish the equivalence of Conjec-
ture J with the previous ones.

In Section 4 we develop a closure concept for Hamilton-connectedness from which, as
immediate applications, we obtain the following statements (see Theorems 15 and 17).

(1) Every 6-connected claw-free graph with at most 29 vertices of degree 6 is Hamilton-
connected.

(i1) Every 7-connected claw-free graph is Hamilton-connected.

(1i1) Conjecture J is equivalent with Conjectures G, H and I.

3  k-closure and structure of 2-closed graphs

The closure concept was extended in [3] as follows.

A vertex x € V(G) is k-eligible if its neighborhood induces a k-connected noncomplete
graph, and the k-closure of G, denoted cli(G), is the graph obtained from G by recursively
performing the local completion operation at k-eligible vertices as long as this is possible.
A graph G is k-closed if G = cli(G).

A class C is k-stable if G € C implies cli(G) € C. A graph property 7 is k-stable in a
k-stable class C if, for any G € C, G has 7 if and only if clx(G) has 7.

Theorem K [3].  For every claw-free graph G,
(i) clk(G) is uniquely determined,
(77) cla(G) is homogeneously traceable if and only if G is homogeneously traceable,
(131) cl3(G) is Hamilton-connected if and only if G is Hamilton-connected.



Thus, homogeneous traceability is 2-stable and hamilton-connectedness is 3-stable in the
class of claw-free graphs.

Let G be the graph in Figure 3 (where the ovals represent cliques on at least three
vertices). Then G has no hamiltonian (a, b)-path, the vertex z is 2-eligible, and there is a
hamiltonian (a, b)-path in the local completion G, of G at x. This shows that the property
“having a hamiltonian (a, b)-path for given a,b € V(G)” is not 2-stable. However, neither
G nor its 2-closure are Hamilton-connected. This motivated the following conjecture.

Figure 3

Conjecture L [3].  Hamilton-connectedness is 2-stable in the class of claw-free graphs.

Note that in [9] the author claimed to give an infinite family of counterexamples to
Conjecture L. However, this statement is not true, since it is not difficult to observe that
the graphs constructed in [9] have similar behavior as the graphs in Figure 3 (i.e., they
show that the property “having a hamiltonian (a,b)-path for given a,b € V(G)” is not
2-stable, but do not disprove Conjecture L).

Affirmative answer to Conjecture L was given in [15].
Theorem M [15].  Hamilton-connectedness is 2-stable in the class of claw-free graphs.

A natural question is whether a 2-closure of a claw-free graph belongs to some “nice”
class of graphs. It is easy to see that, in general, cly(G) is not a line graph, since e.g. the
second or fourth graph in Figure 1 is an example of a 2-closed claw-free graph that is not
a line graph. Thus, a next question is whether a 2-closure of a claw-free graph is a line
graph of a multigraph.

Line graphs of multigraphs were characterized by Bermond and Meyer [2] (see also
Zverovich [18]).

Theorem N [2]. A graph G is a line graph of a multigraph if and only if G does not
contain a copy of any of the graphs in Figure 4 as an induced subgraph.

We see that, in general, cly(G) is not a line graph of a multigraph, since the graphs
Go and G4 of Figure 4 are 2-closed, i.e. they can be induced subgraphs in cly(G).
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We now consider the structure of cly(G) in more detail. We include here only those
results that are needed for introducing the closure concept in Section 4. Proofs and further
necessary auxiliary results are postponed to Section 6.

Lemma 1. Let G be a 2-closed claw-free graph, and let G;, i = 1,...,7 be the graphs
from Figure 4. Then G is {G1, G, G5, Gg, G7 }-free.

Thus, a 2-closed claw-free graph can contain only induced Go and/or G4. In the rest
of the paper we will keep the notation of these graphs as shown in Figure 5.

S Uy Ug Sy U Us

Figure 5

Let J = uguy ... up11 be a walk in G. We say that J is good in G, if k >4, J>? C G
and for any 7, 0 < ¢ <k — 4, ({w;, uis1,...,ui15})¢ is isomorphic to Sy or to Ss.

Similarly, a cycle C' C G is said to be good in G, if every set of six consecutive vertices
of C' induces in G the graph S; or Ss.

Lemma 2. Let G be a 2-closed claw-free graph and J = uguy ...uiy; a good walk
in G, k>5. Thendg(u;)) =4,i=3,...,k—2.

Thus, for i = 3,...,k — 2, (Ng(u;))g is a path of length 3 with vertices w;_o, u;_1,
Uit1, Wit2-



Corollary 3. Let G be a connected 2-closed claw-free graph and let C' C G be a good
cycle in G. Then G = C?.

Corollary 3 specifically implies that a connected 2-closed claw-free graph either is
isomorphic to the square of a cycle (and hence is trivially Hamilton-connected), or contains
no good cycle. In the rest of the paper we concentrate on the second (nontrivial) case.

Let J be a good walk in G. We say that J is mazimal if, for every good walk J' in G,
J being a subsequence of J' implies J = J'.

Lemma 4. Let G be a connected 2-closed claw-free graph that is not the square of a
cycle, and let J = uguy ... ugy1 be a maximal good walk in G. Then (Nglui] \ {us})e =
(Ng[ua) \ {us, us})e and this subgraph is a clique.

Note that symmetrically also (Nglug] \ {ur—2})e = (Ngluk—1] \ {up—2,ur—3})c is a
clique.

Lemma 5. Let GG be a connected 2-closed claw-free graph that is not the square of a
cycle, and let J = uquy ... uy1 be a good walk in G. Then u;y . ..uy is a path.

Let JF be the graphs in Figure 6. We set:
T =A{Ji |k =4},
Jo =A{J5 |k >4},
Js ={J§ |k > 6},
Ji={Ji |k > 8}.

Figure 6



Our next lemma describes the structure of subgraphs induced by good walks.

Lemma 6. Let G be a connected 2-closed claw-free graph that is not the square of a
cycle, let J = uguy ... ury; be a maximal good walk in G, and let J be chosen such that
\V(J)| = min{|{z,uy,...,ug,y}| | xuy...ury is a maximal good walk in G}.
Then
(V(J))e e iU FUJ3U Js.

The following lemma shows that the sets of interior vertices of maximal good walks in
a 2-closed graph are vertex-disjoint.

Lemma 7. Let G be a connected 2-closed claw-free graph that is not the square of
a cycle and let J' = ujuj ... up,, J* = wdui ... uj,, be maximal good walks in G such
that u! = u? for some s,t, 1 < s<k,1<t<k. Then

(1) {ug,...,upt ={u? ... ui},

N - 1_,2 1_ .2 -
(it) k =k and u; = u; oru; = uj_,,,i=1,... k.

4 Closure concept and Hamilton-connectedness

Before introducing the main concept of this paper, the closure operation, we first introduce
some notations and recall some helpful definitions and facts from [9].

For any X C V(G) let Gy denote the local completion of G at X, i.e. the graph
with V(Gy) = V(G) and E(Gy) = E(G) U {uv| u,v € X}. Thus, the previous notation
G, means that, for a vertex x € V(G), we simply write G, for ijg(w)‘ Similarly, for a

Ty...Tp ;1>m2

Let C be a class of graphs and let P be a function on C such that, for any G € C,
P(G) c 2V (ie., P(G) is a set of subsets of V(G)). We say that a graph F is a P-
extension of G, denoted G <X F, if there is a sequence of graphs Gog = G, G4,...,G = F
such that G; € C, i =1,...,k, and Giy = (Gy)x, for some X; € P(G;), i=1,...,k—1.
Clearly, for any graph G exists a <-maximal P-extension H, and in this case we say that
H is a P-closure of G. If a P-closure is uniquely determined then it is denoted by clp(G).
Finally, a function P is non-decreasing (on a class C), if, for any H, H' € C, H < H’
implies that for any X € P(H) there is an X’ € P(H’) such that X C X".

sequence of vertices 1, ..., x;, we will simply write G, for ((Gy)ay - )y

The following result was proved in [9]. For the sake of completeness, we include its
(short) proof here.

Theorem O [9]. If P is a non-decreasing function on a class C, then, for any G € C,
a P-closure of G is uniquely determined.

Proof. Let H # H' be P-closures of G, let G = Gy, Gy, ...,Gr = H' be such that
Giy = (Gl)X for some X; € P(G;), and let s be a smallest integer such that G5 ¢ H.
Since Gs_1 C H and P is non-decreasing, there is X € P(H) such that X, ; C X. Since
H is <-maximal, we have H, = H, a contradiction. [ |



For a given graph G, let Co denote the class of graphs with vertex set V(G). The
following two facts are easy to observe.

Lemma 8. Let G be a graph.
(i) Let P be a non-decreasing function on Cg, let X C V(G), and for any H € Cg set
PX(H)=P(H)U{Ng(x)| x € X}. Then P~ is a non-decreasing function on Cg.
(17) For any integer k > 1, the function Py(H) = {Ng(z)| (Nu(z))y is k-connected }
is a non-decreasing function on Cg. [ ]

Consequently, for any graph G, integer k > 1 and a set X C V(G), the function P,
defined (for any H € Cg) by PE(H) = (Py)*(H), is a non-decreasing function on Cg.

Let now G be a connected claw-free graph that is not the square of a cycle and let
Ji, ..., Ji be all maximal good walks in cly(G). For any J; = uju} ... uj_, set

Xi={uf, . ul_ JU{ul,..  ub }ifk=2r
or

Xp=A{ul,. . ul_ FU{uly. o oub Y if R =2r 41,
respectively, and set X = Ul_; X; (note that the sets X; are pairwise disjoint by Lemma 7).
Then, by Lemma 8, the function PM(H) = P;*(H) is a non-decreasing function on Cg.
The corresponding P*-closure of G (which is unique by Lemma 8) will be called the
multigraph closure (or simply M-closure) of G and denoted 1™ (G). If G is the square of
a cycle, we define cI(G) as the complete graph on V(G). If G = cl™(G) then we say
that G is M -closed.

Theorem 9. Let G be a connected claw-free graph and let cI(G) be the M-closure
of G. Then
(1) cI™(Q) is uniquely determined,
i1) there is a multigraph H such that cI(G) = L(H),
ji1) for I every a € V(G), pa(™ (@) = pa(G),
(iv) (@) is Hamilton-connected if and only if G is Hamilton-connected.

Proof. If G = C? for some cycle C' then the statement is trivial, hence we suppose
that G is not the square of a cycle. Part (i) then follows immediately from Lemma 8,
and part (i7) follows immediately from Lemma 1, from the construction of cI™ (@), from
Lemma 25 and from Theorem N. [ |

Before proving parts (iiz) and (iv) of Theorem 9, we first show that if G is not the
square of a cycle, then 1M (G) can be equivalently constructed by the following algorithm.

Algorithm 10. Let G be a connected claw-free graph that is not the square of a
cycle.
1. Set Gy = cly(G), i := 1.
2. If G; contains a good walk, then
(a) choose a maximal good walk J = uguy ... ugi1,

)
(b) set Giy1 = cla((Gi)yyu,),
(c ) i:=1+ 1 and go to (2).



Proposition_ll. Let G be a connected claw-free graph t;hatis not the square of a
cycle and let G be the graph constructed by Algorithm 10. Then G = I (G).

Proof. By Lemma 28, Algorithm 10 closes all vertices with neighborhood in some
PM(G;), hence cI”(G) ¢ G. By Lemma 25, every vertex with neighborhood in some
PM(G,) is closed by Algorithm 10. Hence G is a special case of one possible construction
of PM(@) and, by Theorem 9(i), G = cI(G). u

Proof of parts (iii), (iv) of Theorem 9 now immediately follows from Proposition 27. ®

Let Ty, Ts, T3 be the graphs in Figure 7. It is easy to observe that if G = L(H) and
z € V(Q) is 2-eligible, then the edge z129 € E(H), corresponding to x, is contained in a
copy of T; for some 4, 1 < i < 3, such that dr,(x;) = dr,(z2) = 3. However, the converse
is not true in general, unless x; and/or x5 have an appropriate neighbor outside. More
specifically, it is straightforward to verify the following observation.

Proposition 12. Let G be a claw-free graph and let T},'T,, T3 be the graphs shown in
Figure 7. Then G is M-closed if and only if there is a multigraph H such that G = L(H)
and H does not contain a subgraph S (not necessarily induced) with any of the following
properties:
(i) S ~11,
(17) S ~ Ty and there is aw € V(H) \ V(S) such that |Ng(u) N {xy, 22} = 1,
(i1) S ~ T3 and there are uy,us € V(H) \ V(S) such that uy # uy and w;x; € E(H),
i=1,2
(where x1, xo are the only vertices in S with dg(z;) = 3). n

Ty le T le T; le
) T2 )
Figure 7

A well-known drawback of line graphs of multigraphs is the fact that there can be
multigraphs Hy, Hs such that Hy % Hy but L(H,) ~ L(H3) (i.e., the “preimage” is not
uniquely determined). However, this problem can be avoided by a slight modification of
an approach given in [18]. Namely, we show that the preimage H = L;; (G) of a line graph
G of a multigraph is uniquely determined under a (very natural) additional assumption
that simplicial vertices in G correspond to edges in H with one vertex of degree 1 (called
pendant edges).

The basic graph of a multigraph H is the graph with the same vertex set, in which two
vertices are adjacent if and only if they are adjacent in H. A multitriangle (multistar) is
a multigraph such that its basic graph is a triangle (star). The center of a multistar S
with m edges is the vertex x € V(S) with dg(z) = m (for |V (S)| = 2 we choose the center
arbitrarily), and all other vertices of S are its leaves. An induced multistar S in H is
pendant if none of its leaves has a neighbor in V(G) \ V/(5), and similarly a multitriangle

10



T is pendant if exactly one of its vertices (called the root) has neighbors in V(G) \ V(.5).
We will use the following operations introduced in [18].
Operation A. Choose a pendant multistar in H and identify all its leaves.
Operation B. Choose a pendant multitriangle H with vertices {v, z,y} and root v, delete
all edges joining v and x, and add the same number of edges between v and y.
Now, for a multigraph H, AB(H) denotes the multigraph obtained by recursively repeat-
ing operations A and B. The following result was proved in [18].

Theorem P [18|. Let H, H' be connected multigraphs such that L(H) ~ L(H').
Then AB(H) = AB(H') unless one of H, H' is a multitriangle and the other one is a
nonisomorphic multitriangle or a multistar.

We will need one more operation.
Operation C. Choose a pendant multistar in H and replace every leaf of degree k > 2
by k leaves of degree 1.
Similarly as before, let BC(H) denote the multigraph obtained from a multigraph H by
recursively repeating operations B and C'. Theorem P then easily implies the following
result.

Theorem 13. Let GG be a connected line graph of a multigraph. Then there is, up
to an isomorphism, a uniquely determined multigraph H = L} (G) such that a vertex
e € V(G) is simplicial in G if and only if the corresponding edge e € E(H) is a pendant
edge in H.

Proof. Let G = L(H). It is easy to see that every edge e € F(H) corresponding to a
simplicial vertex e € V(@) is in a pendant multitriangle or in a pendant multistar. Thus,
BC(H) has the required properties. Uniqueness follows from Theorem P. [ ]

Note that if, specifically, GG is a line graph of a graph, then the multigraph preimage
Ly} (G) of G, given by Theorem 13, and the obvious line graph preimage L~'(G) can be
different. For example, for the graph T} of Figure 7, Ly} (T}) and L~'(T}) are shown in
Figure 8.

Ly (Th) 1 L7(Th) 1
T2 X2

Figure 8

The following result shows that, with the use of the (uniquely determined) preimage
LX}(G) of a line graph of a multigraph G, Proposition 12 can be simplified.

Proposition 14. Let G be a claw-free graph and let T}, T, T be the graphs shown in
Figure 7. Then G is M-closed if and only if G is a line graph of a multigraph and L}} (G)
does not contain a subgraph (not necessarily induced) isomorphic to any of the graphs
Tl, T2 or Tg.

11



Proof. If L;;(G) does not contain any of Ty, Ty, T3, then clearly the conditions (7),
(71) and (7i7) of Proposition 12 are satisfied and hence G is M-closed by Proposition 12.

Conversely, suppose that G is M-closed and let H be a multigraph given by Proposi-
tion 12. Then clearly T} is not a subgraph of H and any T3 or T3 in H not satisfying (i7)
or (i77) is turned by Operations B and/or C into a star. Hence BC(H) does not contain
any of Tl, TQ, Tg. |

5 Applications and sharpness
Combining Theorems F and 9(iv), we immediately obtain the following result.

Theorem 15. Every 6-connected claw-free graph with at most 29 vertices of degree 6
is Hamilton-connected.

Proof. If G is a counterexample to Theorem 15, then H = cl™(G) is a counterexample
to Theorem C. [ |

Corollary 16. Every 7-connected claw-free graph is Hamilton-connected. [ |
Similarly, Theorem 9(iv) immediately implies the following result.
Theorem 17.  Conjecture J is equivalent with Conjectures G, H and 1.

Proof.  Conjecture J implies Conjecture I since every line graph (of a multigraph) is
claw-free. Conversely, if G is a counterexample to Conjecture J, then H = cl (G) is a
counterexample to Conjecture I. [ |

Note that Corollary 16 was conjectured in [12].

We conclude by showing that the closure operation ClM(G) is, in a sense, best possible;
more specifically, there is no closure operation that turns a 3-connected line graph of a
multigraph into a line graph (of a graph) and preserves Hamilton-connectedness.

If C is a class of graphs, then by a closure on C we mean a mapping ¢l : C — C such
that, for any G € C, V(G) = V(cl(G)) and E(G) C E(cl(G)). Let Ly denote the class
of k-connected line graphs (of graphs) and let £ denote the class of k-connected line
graphs of multigraphs.

Theorem 18.  There is no closure cl on £} such that ¢l : £} — L3 and Hamilton-
connectedness is stable under cl.

Proof. Let H be the multigraph shown in Figure 2 and let G = L(H). Then G is
not Hamilton-connected, and the vertices of G that correspond to edges of H adjacent to
some of the vertices aj, as, induce in G a subgraph F' isomorphic to the sixth graph in
Figure 1. Thus, for any closure ¢l : £Y — L3, ¢l(G) contains at least one edge joining
two nonadjacent vertices of F'. However, adding any such edge turns GG into a graph that
is Hamilton-connected. |
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6 Proofs and lemmas

Lemma 19. Let G be a claw-free graph, x € V(G), let y € V(G) be a cutvertex of
(Ng(x))g and let Ky, K5 be components of (Ng(z))g —y. Then (up to a relabeling of
Ky, K»),

(i) (V(K1)U{y})c is a clique and K, is a clique,

(11) if H C (Ng(x))g is 2-connected noncomplete, then H C (V(K3) U{y})q.

Proof.  If (i) fails, then a({Ng(x))c) > 3 and z is a center of an induced claw, a
contradiction. Part (i7) follows immediately from (7). u

Corollary 20.  Let G be a claw-free graph, x € V(G), let H < (Ng(x))e be a 2-
connected graph containing two distinct pairs of independent vertices. Then (Ng(z))¢q is
2-connected.

Proof follows immediately from Lemma 19. [ |

Corollary 21. Let G be a 2-closed claw-free graph, H C G (not necessarily induced),
H ~Sy. If {upups | € =0,1,2} N E(G) =0, then

(1) either H < G,

(7i) or H + ugus ca (and H + ugus >~ S5).

Proof. If wupry € E(G) for some ¢ € {0, 1}, then uso is 2-eligible by Corollary 20, a
contradiction. [ |

Lemma 22. Let G be a 2-closed claw-free graph, x € V(G), H < (Ng(z))g 2-connected,
u,v € V(H) independent. Then u or v is a cutvertex of (Ng(z))¢.

Proof. Since G is 2-closed and u, v are independent, (Ng(z))e cannot be 2-connected.
If (Ng(x))¢ is disconnected, then, for an arbitrary vertex w in the component of (Ng(x))q
not containing H, ({z,u,v,w})e ~ K3, a contradiction. Hence k((Ng(x))e) = 1. Rest
of the proof follows from Lemma 19. [ |

Proof of Lemma 1. Each of the graphs G;, i € {1,3,5,6,7}, contains a vertex x;
satisfying the assumptions of Corollary 20, i.e. such that x; is 2-eligible in any claw-free

graph G such that G; 'C G. Hence none of the G; can be an induced subgraph of a
2-closed graph. [ |

Lemma 23. Let G be a 2-closed claw-free graph, H el G, H ~ Sy or H>~S;. Then

there is no vertex z € V(G)\ V(H) such that {ui,us} C Ng(z) or {us,usz} C Ng(z) (and,
symmetrically, neither {us,us} C Ng(z)).
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Proof. 1. We first show that there is no z € V(G) \ V(H) such that {uy, us, us, us} C
Ng(z). Let, to the contrary, z € V(G) \ V(H) and u; € Ng(z) for i = 1,2,3,4. Then
({uy, ug, uz,us})q is a 2-connected subgraph of (Ng(2))e and uy, uy are independent. By
Lemma 22, u; or uy is a cutvertex of (Ng(2))q-

Suppose uy4 is a cutvertex of (Ng(z))e (the other case is symmetric), and let w €
Ne(z) be in the component of (Ng(z))e — u4 not containing u, up and usz. Since
({us, us, us, w})a # Ky 3, we have usw € E(G). Then ({uq, us, us, w, 2})¢q is a 2-connected
subgraph of (Ng(u4))e containing two distinct pairs of independent vertices, hence uy is
2-eligible by Corollary 20, a contradiction.

2. We show that there is no z € V(G) \ V(H) such that {u;,us,us} C Ng(z) or
{ug,u3,us} C Ng(z). Let, to the contrary, {uy,us,uz} C Ng(z) (the second case is
symmetric). By part 1 of the proof, zuy ¢ E(G) and from ({ug,ug,z,us})e % Kis
we have zuy € E(G). Then ({ug,us,us, 2})g is 2-connected, ug, uz are independent
and, by Lemma 22, either uy or us is a cutvertex of (Ng(u;))e. Choose a vertex w in the
component of (Ng(u1))e—1uo ((Ne(u1))e—us) not containing up and z, respectively.
(i) If ug is a cutvertex of (Ng(u1))q, then ({w, ug, uy, us, us, us})q is isomorphic to Sy
or Sy and we have a contradiction with part 1 of the proof (for the vertex z).

(17) If ug is a cutvertex of (Ng(u1))a, then from ({us, w,us, us}t)e % Kz we have
wus € FE(G), but then (Ng(us3))e contains a 2-connected induced subgraph with
two distinct pairs of independent vertices. By Corollary 20, ug is 2-eligible, a
contradiction.

3. a) Let now {uy,us} C Ng(z) (but ugz ¢ E(G)). From ({us, z,us, us})a % K13 we
have zus € E(G), but then again ug is 2-eligible by Corollary 20, a contradiction.

b) The case {us,us} C Ng(z) is symmetric.

c) Finally, if {ug, us} C Ng(2) (but uiz ¢ E(G)), then from ({us, z,ui,us})e % Ki3
we have zuy € F(G), which is not possible by part 2 of the proof. [ |

Corollary 24.  Let G be a 2-closed claw-free graph, H el G, H~ S or H>~ 9.
Then
(1) both (Nglui] \ {ue,us})e and (Nglus] \ {us, us})q are cliques,
(11) Neluo] \ {us, ua} C Nefud] \ {us},
(#4i) the only neighbor of uy in Ng(us) is us.

Note that also symmetrically (Nglug] \ {us, u2})q and (Nglus] \ {us, u1})q are cliques.

Proof. (i) If (Ngluq] \ {u2, us})q is not a clique, then there is a z € Ng(u1) such that
zug ¢ E(G), but then by Lemma 23 ({u1, 2, up, us})e =~ K 3, a contradiction. The proof
for (Ng[ua] \ {us, us})e is symmetric.

(17) By (i), every neighbor of uy is adjacent to u;.

(113) If z € Ng(ug), z # us, is adjacent to ug, then z ¢ V(H) since H is induced, but
this contradicts Lemma 23. [ |
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Lemma 25. Let G be a claw-free graph, F' C V(G), F = {ug, uy, us, us, uy,us}. If
F induces Sy or Sy in cly(G), then there are vertices vy, vs € V(G) such that the set
{vo, u1, ug, ug, ug, vs} induces Sy or Sy in G.
Proof.  Let clh(G) = G,, ., set Gi = G, _,..i=1,....k (le, G, = clo(G)), and
let F' = {ug, u1,us, ug, ug, us} be such that (F)g, ~ Sy or (F)g, ~ Sa. The proof then
follows by induction from the following fact.

If vg,vs € V(G) are such that {vg, uy, us, us, ug,vs} induces Sy or Sy in G4y for some i,
1 <i <k —1, then there are wy, ws € V(G) such that {wy, u1, ug, us, us, ws} induces S
or Sy in (.

Thus, suppose that {vg, uy, us, us, ug,vs} induces Sy or Sy in Gy = (Gz)x, and set
B = E(Gin) \ E(G;).

Since z; is adjacent to both vertices of all edges in B and F' induces S; or Ss in
Gi = cly(G), by Lemma 23, B N {ujug, ugus, usus} = 0. Since (Ng, (:))¢q, is a clique,
and by symmetry, we can suppose that B C {wvouy,voug, ugus}. If uyus € B, then
({us,ur,us,us})g, is a claw; hence ujuy € E(G;) and |B| < 2. If z; is adjacent in
G; to both u; and usg, then {x;, uy, ug, us, ug, us} induces Sy or Sy in Gy, we set wy = x;,
ws = v5 and we are done. Hence it remains to consider the case when x; is adjacent in

G; to at most one of uy, us and, consequently, |B| = 1. But then for B = {vou;} we
have ({ug, vo, u1,us})q, >~ Ky 3 and for B = {vous} we have ({uq, z;, u1, us})q, ~ Ky 3, a
contradiction. [

Proof of Lemma 2. Let dg(u;) > 5 for some 4, 3 < i < k —2, and let w € V(G)
be a neighbor of w;, w ¢ {u;_9,u;_1,u;11,u;ro}. By Lemma 23 and since J is good, we
have wu;—o ¢ E(G) and wu;1o ¢ E(G). From ({u;, w,u;—o,ui12})e % K13 we then have
ui—ou;ir2 € F(G), contradicting the fact that J is good. [ ]

Proof of Corollary 3. If |V (C)| < 6, then C' cannot be good, hence |[V(C')| > 7. Then,
by Lemma 2, all vertices of C' are of degree 4 in G, implying C? = G. [ |

Proof of Lemma 4. By Corolary 24(i), (Nglus] \ {us,us})c is a clique and by Corol-
lary 24(ii), Nglua]\{us, us} C Ng[ui]\{us}. Thus, it remains to show that Ng[ui]\{us} C
Nelug) \ {us,us}. If this is not the case, then there is a vertex x € V(G) such that
zuy € E(G) and zuy ¢ E(G). By Corollary 24(i) then zuy € E(G) and, by Corollary 21,
J' = xuguy ... upy is a good walk in G, contradicting the maximality of J. [ |

Proof of Lemma 5. Suppose that u; = u; for some ,7, 1 < ¢ < j <k, and choose 1, j
such that j — ¢ is minimum. Then w; ... u;_1u; is a cycle, and by the minimality of j — 1,
Uiyl 7 Uj_1.

1. Let first 3 < j <k — 2. Then, by Lemma 2, (Ng(u;))q >~ Py.

If 2 < i < k—2, then also the neighborhood of u; in J? is a P;, and these neighborhoods
coincide. Since u;y1 # u;_1, we have u;41 = uj41, from which w0 = ujie, w1 = uj_q
and u;—9 = uj_o. Then u; ... u;_1u; is a good cycle, a contradiction by Corollary 3.

If 7 = 1, then the equality uy = u;_; follows from uy = w;1; and from the equality of
neighborhoods, and the cycle u; ... u;_1u; is good by Corollary 21.
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2. The case 3 <1 < k — 2 is symmetric.

3. Thus, it remains to consider the possibility ¢ € {1,2}, j € {k — 1,k}. This
specifically implies that for every good walk J = ugu; ... ux; we have k < |[V(G)| + 2,
hence for every good walk J there is a maximal good walk J" such that J is a subsequence
of J'. Hence we can without loss of generality suppose that J is maximal. We distinguish
4 cases.

a)i =1, 7 =k —1. Then, by Lemma 4 and by the fact that J is good, (Ng(u1))¢
consists of a clique and one edge while (Ng(ux_1))g consists of a clique and a Pj, a
contradiction.

b) i =2, j = k. This case is symmetric to the previous one.

c)i=2,j=k—1. Then the only possible vertices of degree 1 in (Ng(us))g are ug
and uy, and, in (Ng(ug_1))c only ug_3 and ug, 1. Since ug_3 # ug (by the choice of i and
j), we have ugyq = uy, and hence uy_3 = ug. Since clearly £ > 5, we have dg(uz) = 4
and wug is the only common neighbor od us, uy, but then, since uy is a common neighbor
of up_1 = uy and ugy1 = uy, necessarily up = ug and we are in Case 2.

d) i = 1, j = k. The only universal vertex in (Ng(u1))g is ug and in (Ng(ug))q is
uk_1. Hence us = ug_1, contradicting the choice of i, j. |

Lemma 26. Let G be a connected 2-closed claw-free graph that is not the square of
a cycle, J = ugu; ... upy1 a maximal good walk in G, u € V(G), u & {ug, u1, us, us, us},
such that uu; € E(G) or uus € E(G). Then:
(1) both uu; € E(G) and uus € E(G),
(79) uuq ... upyq is a good walk in G,
(23i) ifu € V(J), then k > 6 and u € {ug_1, ug, Ug11}-

Proof. (i) follows immediately from Lemma 4.

(1), (vii) If w ¢ V(J), then Lemma 23 implies uug ¢ E(G) and we are done by
Corollary 21. Hence suppose u € V(J). Since uuy € E(G) and J is good, necessarily
u = u; for some j > 7, implying k > 6. Since dg(us) = 4 (by Lemma 2), uug ¢ E(G)
and hence uuy ... ugqq is good by Corollary 21. Since dg(u;) =4 for 3 < j <k —2 (by
Lemma 2), we have u € {ug_1, ug, ug11}- [ ]

Proof of Lemma 6. First observe that by Lemma 2 the only edges to be considered are
those between ug, w1, uy and wg_1, Up, Up1-

Case 1: J is not a path. Since uq,...,u; is a path by Lemma 5, the only possibilities
are ug € {up_1, U, upr1}, and, symmetrically, w1 € {ug,u1,us} (note that k& > 6 by
Lemma 26).

a) ug = ur_1. By Lemma 4, ({uy,us, ug, urs1,ur})c is a clique (not excluding the
possibility that ugy1 € {uy,us}). Then ({uy,...,ux}t)e € Jy (since all edges between
uy, us and ug_1, ug are present and no other edges are possible by Lemma 2), and hence
for ugy1 € {ur,us} we have (V(J))e = {us,...,ux})¢ € Ju and we are done, otherwise
we have a contradiction with the minimality of J.
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b) ug = ug. Then similarly, by Lemma 4, ({u1, ug, ug, up_1,ups1})c 18 a clique and
then, as before, for wi41 € {u1,us} we obtain (V(J))g = ({w,...,u})e € Ju, and
otherwise we have a contradiction with the minimality of .J.

¢) ugp = ug+1- Then the only possible edges to be considered are the edges be-
tween up, up and wuy_1,ur. By Lemma 26, either {ujug, ujugi1, usuy, usupi1} C E(G),
or {uitg, ugtgy1, Usty, ustg1} N E(G) = 0. In the first case we have (V(J) \ {uo})e =
({u,...,ur})e € Ju, contradicting the minimality of J, otherwise (V(J))g € Js.

Case 2: J is a path. By Lemma 26, either {ujug 1, usug1} C E(G), or {ugug1, ustigyq }0
E(G) = 0. In the first case, the walk J — ug = upiiuis ... upupry is good in G,
contradicting the minimality of J. Hence ujuyyi1,usurr1 ¢ E(G), and, symmetrically,
utg—1, uoux, ¢ E(G).

It remains to consider the edges between uq,us and ug_1,ug. Again, by Lemma 26,
either all of them or none of them are present. In the first case, the walk J — {ug, ugs1} =
UpUUs . . . Up_ugpuy is good in G, contradicting the minimality of J; in the second case
we have (V(J))a € Jh if wourr1 ¢ E(G) and (V(J))g € Jo if upup1 € E(G). u

Proof of Lemma 7. If 3 < s < k—2or 3 <t <k — 2, then the statement follows
immediately by Lemma 2 (for {s,¢} N{1,2} # 0 we use the equality of neighborhoods of
the vertices ul = u2, and symmetrically for s € {k — 1,k} or t € {k' — 1,k'}).

It remains to consider the cases when s € {1,2,k —1,k} and ¢t € {1,2,k — 1, k'}. By
symmetry, it is sufficient to suppose s,t € {1,2} (otherwise we relabel one or both walks).

1. Let uj = u3. By Lemma 4, (Ng(ul))g consists of a clique and an edge, while
(Ng(u3))g consists of a clique and a Ps, a contradiction. Hence u} # u3 and, symmetri-
cally, u? # ud.

2. Suppose that ui = u3. By Lemma 4, at most two vertices in (Ng(ub))g can be of
degree 1, namely, uj) and u, i = 1,2. We distinguish two subcases.

a) ul = u?. The only neighbor of u} in (Ng(u}))¢ is the vertex uj, i = 1,2; hence
ui = u3. By Lemma 23, u} is the only neighbor of u} in (Ng(u}))q, distinet from u!,
i = 1,2, hence also uj = uj. For k = k' = 4 we thus have uj = u?, j = 1,2, 3,4; otherwise
(i.e. if k > 5 or k' > 5) the statement follows from u3 = u3 by the beginning of the proof.

b) u = u? (and hence u} = u?). Similarly as in a) we have u} = u2. The vertex u?

is of degree 1 in (Ng(u3))¢ (since uf = uj and u} is of degree 1), hence ui = u?. But
then the vertices v} = u? and u} = w2 have a common neighbor u} and uiu} ¢ E(G),
contradicting the fact that, by Lemma 4, Ng[u?] \ {u3} = Ng[u3] \ {u3,u?}.

3. Finally, let ul = u?. By Lemma 23, the only universal vertex in (Ng(u}))q is ub,
i =1,2. Hence u} = u3 and we are back in Case 2. |

Proposition 27. Let GG be a connected 2-closed claw-free graph that is not the square
of a cycle and let J = ugu; . ..ugs1 be a maximal good walk in G. Then
(i) for every a € V(Q), pa(G,,...) = pa(G),

* . . uIUk . . . .
(ii) the graph G, is Hamilton-connected if and only if G is Hamilton-connected.
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Proof. In the proof of Proposition 27 we will need the following result by Brandt et
al. (see [6], Proposition 3.2).

Proposition Q [6]. Let « be an eligible vertex of a claw-free graph G, G, the local
completion of G at x, and a, b two distinct vertices of G. Then for every longest (a,b)-
path P'(a,b) in G, there is a path P in G such that V(P) = V(P') and P admits at
least one of a, b as an endvertex. Moreover, there is an (a, b)-path P(a,b) in G such that
V(P) = V(P') except perhaps in each of the following two situations (up to symmetry
between a and b):

(1) There is an induced subgraph H C G isomorphic to the graph S in Figure 9 such
that both a and x are vertices of degree 4 in H. In this case G contains a path P,
such that b is an endvertex of P and V(P,) = V/(P'). If, moreover, b € V(H), then
G contains also a path P, with endvertex a and with V (P,) =V (P’).

(11) * = a and ab € E(G). In this case there is always both a path P, in G with
endvertex a and with V(P,) = V(P') and a path P, in G with endvertex b and
with V(P,) = V(P").

ds
S
C1 Co
d2 C3 dl
Figure 9

Let G and J = w,uy ... uky; satisfy the assumptions of Proposition 27 and let S be
the graph of Figure 9. For simplicity, set G’ = G, and G" = (G"),, = G,,,,. We show
the following.

Claim 27.1. There is no set M C V(G) satistying either of the following conditions:
(i) (M)g ~ S and diy, (u1) = 4 or diny, (u2) = 4,
(ZZ) <M>G’ ~ S and d<M>G’ (uk) =4 or d<M>G’ (uk_l) =4.

Proof of Claim 27.1. Suppose there is such a set M C V(G).

(i) If diany, (u1) = 4, then (N, (w1))e ~ Py, but, by Lemma 4, (Ng(uy))e consists
of a clique and an edge, a contradiction.

Suppose that di, (u2) = 4, let e.g. uy = ¢1 (see Figure 9). Then (N, (u2))q is
a Py with vertices da, ¢1, ¢o, dy. By Lemma 4, the only possible induced Py in (Ng(u2))¢
is zujuguy, where © € Ng(ug) \ {us, us}, but then uy = ¢; or uy = ¢ and we are in the
previous case.

(17) Let first J ¢ Jy. Since (Ng(ug))e = (Ner(uk))er, and for k > 5 also (Ng(uk—1))¢ =
(N (ug—1))cr, the proof is symmetric to the proof in (¢) in these cases. It remains to con-

sider the case duy,, (uk—1) = 4 for k = 4. Then (N¢(us))qr can be covered by two cliques
Ky, Ky, where {ug,u1,us} C V(K;) and {uy,us} C V(K3), and hence the only possible
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induced Py is zuguyy for x € V(K;) and y € V(K,). This again leads to the previous
case.

Secondly, if J € Jy, then k > 8, we have (Ng/(ug))er = (Ng(ug) U {us})e and then,
by Lemma 4 and by the definition of G’, (Ngr(ug))e consists of a clique and an edge, a
contradiction. 0O

By Claim 27.1, the case (i) of Proposition Q is not possible. From this, again by
Proposition Q, we conclude that:

o for any a € V(G), po(G") = p(G), i.e., statement (i) of Proposition 27 holds,

e if the statement (i) of Proposition 27 fails, i.e. if poy(G’) # pap(G) or pu(G”) #
Par(G'), then we have the situation described in case (i7) of Proposition Q, i.e.
ab € E(GQ) and = € {a, b} (where © = uy or & = uy, respectively).

Suppose that pa(G) # pay(G). Then uy € {a,b}. Let G denote the local completion of
G at uy. Since Ng(u1) C Ne(up) by Lemma 4, we have E(G') € E(G), and hence for any
pair a,b € V(Q) for which pay(G”) # pap(G) also pa(G) # pas(G). Thus, by Proposition Q,
ug € {a,b}. Hence we conclude that if p,,(G’) # pa(G), then {a,b} = {uy,us}.
Symmetrically, if p.,(G”) # pa(G'), then {a,b} = {ug_1,ux} (since the argument for
U1, us used only the statements of Lemma 4 and of Proposition Q and these remain true
also in G'). In the latter case (i.e., {a,b} = {ug_1,ur}), we observe that G = G, =
Gy~ The proof for G, is then symmetric to the proof for G” and {a, b} = {u1,us}, and
the proof for G, (i.e. for the local completion of G, at u;) follows by Proposition Q.

Hence it is sufficient to prove the statement for wuq, us.

Consider the following statements:

(a) G'is Hamilton-connected,

(b) G contains a hamiltonian (a,b)-path for all pairs a,b € V(G) except possibly

{a, b} = {u1, ua},

(c) G’ contains a hamiltonian (ug, us)-path,

(d) G contains a hamiltonian (uy, us)-path,

(e) G is Hamilton-connected.
By the previous discussion, (a) = (b). Obviously (a) = (c¢) and (b) A (d) = (e). Thus,
in order to show that (a) = (e) (i.e. to finish the proof of Proposition 27), it is sufficient
to show that (c) = (d).

Claim 27.2. If G’ contains a hamiltonian (us,us)-path, then G contains a hamiltonian
(w1, ug)-path.

Proof of Claim 27.2. Let P’ be a hamiltonian (us, us)-path in G’. We first show that P’
can be chosen such that P’ C G.

By Lemma 4, every edge in E(G’) \ E(G) contains the vertex uz. Thus, if P’ contains
an edge in E(G')\ E(G), then this is the edge ug us. If uy = uy, we set P’ := uyus Plujus
(since uguz € E(G) by Lemma 4); for ug # u; we replace in P’ the path uj uju; by the
edge uy uf and the edge uzuz by the path ugujus, i.e. we set P’ := uy P'uj uj P'ugujus
(the edges we need are in G again by Lemma 4). Thus, in the rest of the proof we suppose
that P’ is a hamiltonian (ug, u3)-path in G and we construct a hamiltonian (uy, us)-path
Pin G.
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If uy = uj, then we set P = uyP'usug, and if u; ¢ {uj,us}, then we set P =
uyugP'uiul P'uy (note that u;uf € E(G) by Lemma 4). Thus, we can suppose that
u; = ug. For ug = uy we then set P = u; P'ugusuy, hence we can further suppose that
ug # uy. Now, if uqus € E(P') (which, by Lemma 2, necessarily occurs if k& > 6), then
for us = uj we set P = uy Plusugug P'ug and for uy = ui we set P = uy Plugugus P'us.

Thus, it remains to consider the following situation: u; = uz, ug # uy, ugus ¢ E(P')
and 4 < k < 5.

If k = 4, then us, uy, us, uy ,uj are in a clique (by Lemma 4) and we replace uqu; by
uguguy, i.e. we set P = uy P'uf uguyP'us.

Finally, if k = 5, then wuy, us, uy,uf,us ,us are in a clique (again by Lemma 4) and
we set P = uy P'ud ug P'uj ususug P'ug if P’ = uy P'ugPlusP'uyus, and P = uy Plujuzusuy
P'ufuz Pluy if P/ = ugPlus P'uy P'ujus. [ |

Lemma 28. Let G be a connected 2-closed claw-free graph that is not the square of a
cycle, J; = uguy ... Ugt1, Jo = Ugv; ... Upp1 two maximal good walks in G, {uy ... ux} #
{vi...v,}, and let G’ = CIQ(G;%). Then either (V(J1))c is a clique, or there are vertices
wp, Wgy1 Such that wouy . .. upwg,1 is a maximal good walk in G'.

If moreover p > 6, then also either (V(J2))¢ is a clique, or vy ... v, is a maximal good

walk in G'.

Proof.  First note that, by Lemma 7, {u;...ux} N{v1...v,} = 0. Let Go,G4,...,Gy
be a sequence of graphs such that Gy = G, vuy Gitl = (Gy), for some z; that is 2-eligible
inGi,i=0,1,....,t =1, and Gy = G'. Set Jj| = {us, ..., up—2}, J5 ={v4,...,v,_3} and
let 7 be the smallest integer such that at least one of the following holds:
(4) there is a vertex w € Jj U J; such that dg, (w) > 4,
(¢4) Jy or vy ...v, is not good in Gj.
Thus, there is an edge e € E(G;) \ E(G;_1) such that either
(7) e has one vertex at some w € Jj U J5, or
(1) e joins some vertices u;, Uity Or v, Viqp for 3 <p <5
(such an edge will be referred to as a bad edge).
If 7 =0, then a bad edge is obtained by local completion at v; or at v,. Then clearly
U1 ...v, remains good, and (i') is not possible since neither v; nor v, can be adjacent in
Gj_1 to any w € J; U Jj. Hence the bad edge has both vertices in V' (J;). But, for vy,
all edges in E((Gj-1),,) \ E(Gj_1) contain vs, hence the existence of a bad edge implies
vg € V(J1), contradicting Lemma 7. The argument for v, is symmetric.
Hence j > 1, i.e. a bad edge is obtained by closing a 2-eligible vertex. We prove the
statement for the case when the bad edge has at least one vertex w in V(.J;); the proof
for a bad edge with both vertices in v; ... v, is the same.

We first verify the following two observations.

(x) If (V(J1))e, is not a clique, then every vertex w € {us,...,u,_2} has in G; no
neighbors outside V' (Jy).

Proof. Suppose () fails and let w = u, have a neighbor outside V'(J;). Then w has in
Gj_1 a 2-eligible neighbor z, and, by the choice of j, z € {ua—2,Ua—1, Ua+t1,Uat2}. Also
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by the choice of j, z ¢ {us,...,ux_2} (since dg, ,(2) = 4 and any additional edge in
(Ng,_,(2))a;_, would violate (ii). Thus, by symmetry, it remains to consider the cases
z € {ur, us}.

If £ > 6, then uy cannot be 2-eligible in G;_; since uy is of degree 1 in (Ng,_, (u2))a,_,,
and similarly with us being of degree 1 in (Ng,_, (u1))a,_, for k > 5. Since clearly k # 4
(otherwise there is nothing to do), it remains to consider the case £k = 5 and z = us.
However, in this case, if us happens to be 2-eligible, then it is easy to see that (V(J1))g,
is a clique. 0

(xx) If (V(J1))q, is not a clique, then no vertex u;, 1 <1i <k, is 2-eligible in G;_;.

Proof. We first consider the case i € {1,2}. If u; is 2-eligible in G;_; and k = 4 or if us
is 2-eligible in Gj_; and k < 5, then, by Lemma 4, (V' (J;))¢, is a clique. In all remaining
cases, by (x) and by the choice of j, u; has a neighbor of degree 1 in (Ng,_, (u:))a
i = 1,2, hence u; cannot be 2-eligible. Symmetrically, i ¢ {k — 1,k}.

Hence 3 < i < k — 2. Then (Ng,_, (w))q,_, contains a path P that is not in G. By
the choice of j, P has no interior vertices, hence P is an edge. But then P is a bad edge
in G;_1, a contradiction. 0

-1

By the assumption, there is an edge zy € E(G;) \ E(G,-1) such that zy is a bad edge
in G;. By (x) and (*x), there are the following two cases.

Case 1: x € {ug,us2}, y € {up_1,us} and zy is obtained by closing a vertex z ¢ V(J;) that
is 2-eligible in G;_;. Then, by Lemma 4, {uy, u2, ux—1,ur} C Ng,_,(2). Since closing at
z creates a bad edge, (k—1) —2 <4, ie. k <7. But then, for any k, 4 <k <7, V(J;)
contains a vertex that is 2-eligible in G;, implying (V' (J1))g, is a clique.

Case 2: k=4, x = ug, y € {us,us} or k =5, © = ug, y = uy (or, symmetrically, k = 4,
T =1us, y € {u,us} or k=5, x =us, y = uz). Then, using Lemma 4, (V(J;))g, is again
a clique. n
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