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Abstract

A k-subtrestle in a graph G is a 2-connected subgraph of G of maximum
degree at most k. We prove a lower bound on the order of a largest k-
subtrestle of G, in terms of k and the minimum degree of G. A corollary
of our result is that every 2-connected graph with n vertices and minimum
degree at least 2n/(k + 2) contains a spanning k-subtrestle. This corollary
is an extension of Dirac’s Theorem.

1 Introduction

One of the basic results of Graph Theory is Dirac’s minimum degree condition
for the hamiltonicity of a graph [4] (see also [2, Theorem 2.1]):

Theorem 1 (Dirac’s Theorem). Every graph with n ≥ 3 vertices and minimum
degree at least n/2 contains a Hamilton cycle.

Dirac [4] derived the following corollary of Theorem 1, given as Theorem 2.15
in [2]:
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Theorem 2 (Dirac). Every 2-connected graph with n vertices and minimum
degree δ contains a cycle of length at least min {2δ, n}.

We will be concerned with an extension of the above results from cycles to
structures known as (sub)trestles. Given a positive integer k, a k-subtrestle in a
graph G is a 2-connected subgraph H ⊂ G with maximum degree ∆(H) ≤ k. A
k-trestle in G is a spanning k-subtrestle. Thus, a 2-trestle is exactly a Hamilton
cycle. This concept was first studied (with different terminology) by Barnette [1]
for 3-connected planar graphs. Further results on the existence of k-trestles in
embedded graphs can be found in [7, 8, 9, 10].

In the present note, we will establish an extension of Theorem 2 to trestles:

Theorem 3. Let G be a 2-connected graph with n vertices and minimum degree
δ and let k ≥ 2. Then G contains a k-subtrestle H with

|V (H)| ≥ min

{⌊δ(k + 2)

2

⌋
, n

}
. (1)

Observe that Theorem 2 follows from Theorem 3 by setting k = 2. Another
corollary, in the direction of Theorem 1, was originally conjectured by M. Tkáč:

Corollary 4. Every 2-connected graph with n vertices and minimum degree at
least 2n/(k + 2) contains a k-trestle.

To see that Theorem 3 implies Corollary 4, note that the degree condition
in Corollary 4 implies that the minimum on the right hand side of (1) equals n.
Thus, by Theorem 3, G contains a k-trestle.

The following family of examples shows that Theorem 3 is optimal. Let
a, k ≥ 2 be integers. Set b = bak/2c + 1 and consider the complete bipartite
graph Ka,b. Note that the minimum degree of Ka,b is a. Using Theorem 3, it
is easy to see that Ka,b contains a k-subtrestle on at least a + b − 1 vertices.
To demonstrate the optimality of Theorem 3, we will show that Ka,b does not
contain a k-subtrestle on a+ b vertices — equivalently, a k-trestle.

Suppose Ka,b contains a k-trestle H. Then the number of edges of H (say,
m) is at most ak by the maximum degree condition for H. On the other hand,
since every vertex of Ka,b has degree at least 2 in H, m ≥ 2b. Combining the
inequalities, we find

ak

2
−
⌊ak

2

⌋
≥ 1,

a contradiction. Thus, Ka,b contains no k-trestle and the optimality of Theorem 3
is established. Furthermore, this example also shows that Corollary 4 is optimal.

In the rest of this section, we fix the necessary terminology. The reader is
referred to standard graph theory textbooks such as [3] for any undefined notions
and notation.
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All the graphs will be undirected and simple. Let H be a subgraph of a graph
G. If v is a vertex of G, then NH(v) denotes the set of neighbors of v in H, and
we write dH(v) for |NH(v)|. We let δ(G) and ∆(G) denote the minimum and
maximum degree of G, respectively.

For vertices u, v of G, a uv-path is a path whose endvertices are u and v. A
uH-path is a path whose endvertices are u and a vertex of H, and none of whose
internal vertices is contained in H. As usual in the theory of ear decompositions,
we define an H-ear to be a path of length at least 2 in G with its endvertices
in H and otherwise disjoint from H. Two paths are internally vertex-disjoint if
each vertex in their intersection is an endvertex of both of the paths.

If K is a component of G−V (H), then K̃ denotes the subgraph of G obtained
from K by adding all the edges of G with one endvertex in K and the other in
H, together with all such endvertices.

If u and v are vertices on a path P , we write uPv for the part of P between
u and v inclusive. The concatenation of paths uPv and vQw (which in general
may not be a path) is denoted by uPvQw. Similarly, for the concatenation of an
edge uv and a path vQw, we write uvQw, etc.

2 Preliminary observations

We will need a lemma on long paths in graphs where almost all graphs have high
degree. The lemma follows directly from [5, Proposition 1], but it also has a
simpler proof which we give below. (See also [6], where a more general result is
claimed without a proof.)

Lemma 5. Let G be a 2-connected graph on at least three vertices, and assume
that every vertex of G, except possibly for vertices u and v, has degree at least δ.
Then G contains a uv-path P of length at least δ.

Proof. Let p = min {dG(u), dG(v)}. We define a graph G∗ by taking k ≥ δ/p
copies of G and identifying all the copies of the vertex u; we also identify all the
copies of v. (If uv is an edge of G, we only include it once.) Note that G∗ is
2-connected and δ(G∗) ≥ δ. By Theorem 2, it contains a cycle C which is either
hamiltonian or has length at least 2δ.

If C is hamiltonian, then the part of C in any copy of G gives a Hamilton
uv-path in G. Since G contains vertices of degree δ, this path must have length
at least δ and we are done.

Thus, we may assume that the length of C is at least 2δ. If all of C resides in
one copy of G, then let Pu and Pv be disjoint (possibly trivial) paths from C to
u and v, respectively. Choosing P to be a subpath of C of length at least δ, we
observe that the concatenation of Pu, P and Pv is a uv-path of length at least δ.

The only remaining case is that the length of C is at least 2δ and C is contained
in the union of two copies of G in G∗. Then the part of C in one of the two copies
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must have length at least δ.

The following lemma is our main technical device.

Lemma 6. Let H be a subgraph of a 2-connected graph G such that |V (H)| ≥ 2.
Assume that the minimum degree of G is at least δ ≥ 3. For each component K
of G− V (H), at least one of the following conditions holds:

(a) K is trivial (that is, |V (K)| = 1),

(b) K contains at least two vertices whose degree in K is at most δ/2− 1, or

(c) K̃ contains an H-ear of length at least (δ + 3)/2.

Proof. Suppose that K is a component of G − V (H) satisfying neither (a) nor
(b). We prove that K has property (c). By the assumption, K has at least two
vertices. Furthermore, if |V (K)| = 2, then since (b) does not hold, we must have
δ = 3, in which case (c) is satisfied. Thus, we may assume that K has at least 3
vertices.

If K is 2-connected, then we can use Lemma 5. By the 2-connectedness of G,
there are vertices u1, u2 ∈ V (K) such that each ui has a neighbor in H and the
neighbors are distinct. Clearly, we may choose u1 as the vertex of degree at most
δ/2 − 1 in K if it exists. By Lemma 5, K contains a u1u2-path P of length at
least (δ− 1)/2. Adding the edges joining each ui to its neighbor in H, we obtain
an H-ear of length (δ + 3)/2 in K̃. Thus, we may suppose that K contains a
cut-vertex.

If K contains at least two vertices (say, v1 and v2) of degree 1 in K, then
δ ≤ 3 for otherwise K would satisfy (b). By the 2-connectedness of G, it is easy
to find an H-ear of length 3 in K̃ as required.

By the above, we may assume K to have a cut-vertex and contain only at
most one vertex of degree 1 in K. Since K has at least two end-blocks and only
one can be of order 2, we can choose an end-block B with |V (B)| ≥ 3. Let b be
the cut-vertex incident with B. We define KB as the graph obtained from K by
removing all vertices of B except b.

Since condition (b) is not satisfied, there is at most one vertex in V (B)−{b}
whose degree in B is at most δ/2−1. We distinguish two cases based on whether
such a vertex exists or not.

Case 1: A vertex u of B − {b} satisfies dB(u) ≤ δ/2 − 1. Since all vertices of
B other than b and u have degree at least (δ − 1)/2, Lemma 5 implies that B
contains a bu-path P of length at least (δ − 1)/2.

Let w be a neighbor of b in KB. Since G is 2-connected, G − {b} contains a
wH-path W ; let us denote its endvertex in H by w′. Observe that W is vertex-
disjoint from P . We wish to extend the path P ′ := w′WwbPu to make it an
H-ear. To do so, note that since dB(u) ≤ δ/2− 1, we have

dH(u) ≥ δ

2
+ 1 ≥ 5

2
.
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The vertex u thus has at least three neighbors in H, so we can choose one, say u′,
which is distinct from w′. Adding the edge uu′ to the above path P ′, we obtain
an H-ear of length at least (δ + 5)/2.

Case 2: All vertices v of B − {b} satisfy dB(v) ≥ (δ − 1)/2. Let w1 be a
neighbor of b in KB, and let w2 be a neighbor of b in B. Since G is 2-connected,
G− b contains a w1H-path W1 and a w2H-path W2. These paths are internally
vertex-disjoint as b is a cut-vertex of K. For i = 1, 2, let w′i be the endvertex of
Wi in H. Furthermore, let u2 be the neighbor of w′2 on W2. Since all vertices of
B except b have degree at least (δ − 1)/2 in B, and since |V (B)| ≥ 3, Lemma 5
implies that B contains a bu2-path Q of length at least (δ − 1)/2.

If w′1 6= w′2, then the path w′1W1w1bQu2w
′
2 is an H-ear of length at least

(δ+5)/2 in K̃, and we are done. Thus, we may assume that for all neighbors v of
b in G, all vH-paths end in w′1. This means that w′1 is a cutvertex of G separating
b from the (nonempty) subgraph H − w′1, a contradiction with the assumption
that G is 2-connected.

3 Proof of Theorem 3

Let H be a 2-connected subgraph of a graph G and d a positive integer. A
d-extension of H is any graph H ′ which can be obtained as

H ′ = H ∪ P1 ∪ · · · ∪ Pm,

where for each i = 1, . . . ,m, Pi is an (H∪P1∪· · ·∪Pi−1)-ear such that each of its
endvertices is an endvertex of at most d−1 of the paths P1, . . . , Pi−1, and Pi is as
long as possible with this property. Note that any d-extension of a k-subtrestle
of G is a (k + d)-subtrestle of G.

A d-extension H ′ of H is maximal if it has the maximum possible number of
vertices among d-extensions of H.

For any d-extension H ′ of H (maximal or not), the sequence (P1, . . . , Pm) is
called an ear sequence of H ′ (with respect to H). In general, it is not uniquely
determined. If the ear sequence is fixed, then for 0 ≤ i ≤ m we write

Hi = H ∪ P1 ∪ · · · ∪ Pi

(in particular, H0 = H and Hm = H ′).
We call a path long if its length is at least (δ + 3)/2, short if its length is 2,

and intermediate otherwise.

Lemma 7. Let (P1, . . . , Pm) be an ear sequence of a d-extension H ′ of a 2-
connected subgraph H of G. Then the following holds:

(i) the lengths of the paths P1, . . . , Pm are non-increasing;
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(ii) if there is a long H ′-ear P and H ′ is a maximal d-extension of H, then
some endvertex of P is an endvertex of d long paths in (P1, . . . , Pm);

(iii) if there is an intermediate H ′-ear P and H ′ is a maximal d-extension of
H, then some endvertex of P is an endvertex of d long or intermediate
paths in (P1, . . . , Pm).

Proof. (i) Suppose that 1 ≤ i < j ≤ m and Pi is shorter than Pj. Let u1 and
u2 be the endvertices of Pj. Being 2-connected, Hj−1 contains a u1Hi−1-path Q1

and a u2Hi−1-path Q2 such that Q1 and Q2 are vertex-disjoint. For t = 1, 2, let
vt be the endvertex of Qt other than ut.

Since no internal vertex of Pj is contained in Hj−1, the concatenation of Q1,
Pj and Q2 is a path. In fact, it is an Hi−1-ear, and it is longer than Pi. By the
definition of a d-extension, and by symmetry, v1 is an endvertex of at least d of
the paths P1, . . . , Pi−1. Thus, it is not contained in any of the paths Pi, . . . , Pj,
and hence all its neighbors in Hj are contained in Hi−1. Considering the neighbor
of v1 on Q1, we get a contradiction with the choice of Q1.

(ii) By (i), there is some ` (1 ≤ ` ≤ m) such that the long paths in (P1, . . . , Pm)
are P1, . . . , P`. Suppose that each endvertex of P is an endvertex of fewer than
d of these paths. By the maximality of H ′, m > ` for otherwise we could get a
larger d-extension of H by adding P to H`. Similarly as in part (i), we can extend
P to a long H`-ear, none of whose endvertices is an endvertex of more than d− 1
of the paths P1, . . . , P`. This contradicts the choice of the (intermediate or short)
H`-ear P`+1. The proof of part (iii) is similar.

Let us point out once more that by Lemma 7(i), if an ear sequence of H ′

contains any long paths, then they precede all the other paths, and short paths
appear at the end of the sequence.

We are now ready to prove our main result, Theorem 3.

Proof of Theorem 3. We proceed by induction on k, using k = 2 and k = 3 as
base cases.

Case 1: k = 2. In this case, the assertion is true by Theorem 2.

Case 2: k = 3. Let H be a cycle in G of length at least 2δ, which exists by
Theorem 2. We need to extend H to either a 3-trestle of G, or a 3-subtrestle of
G whose order exceeds the order of H by at least⌊5δ

2

⌋
− 2δ =

⌊δ
2

⌋
.

Thus, let H ′ be a maximal 1-extension of H and let (P1, . . . , Pm) be an ear
sequence of H ′. Set x = |V (H ′)| − |V (H)|. We may suppose that H ′ is not
spanning and x < bδ/2c, for otherwise we are done.

Letm1,m2 andm3 be the number of long, intermediate and short paths among
(P1, . . . , Pm). Since x < δ/2, we have m1 = 0. By the 2-connectedness of H and
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the fact that H ′ is not spanning, there is a longest H ′-ear P . By Lemma 7(ii), P
is not long. We distinguish two cases.

Suppose first that P is intermediate and let K be the component of G−V (H ′)
containing the internal vertices of P . By Lemma 6, K contains vertices u1, u2
whose degree in K is at most δ/2 − 1. Thus, for i = 1, 2, dH′(ui) ≥ δ/2 + 1.
Moreover, any two distinct vertices v1 ∈ NH′(u1) and v2 ∈ NH′(u2) are the
endvertices of an intermediate H ′-ear. By the maximality of H ′ and Lemma 7(iii),
it may be assumed that each vertex in NH′(u1) except at most one is an endvertex
of an intermediate path Pj (1 ≤ j ≤ m2). Consequently,

2m2 ≥ δ/2.

From another point of view, this inequality means that the paths P1, . . . , Pm2

contain at least δ/2 internal vertices, which implies that x ≥ δ/2 contrary to our
assumption.

Thus, we may assume that P is short. Let v be the internal vertex of P . By
Lemma 6, there are at least δ neighbors of v in H ′ and any two of them determine
a short H ′-ear. By the maximality of H ′, each of these neighbors, except at most
one, must be an endvertex of one of the paths P1, . . . , Pm. Hence

2m ≥ δ − 1

and we find that m ≥ bδ/2c for each possible parity of δ. Since x ≥ m, this
contradicts our assumption.

Case 3: k ≥ 4. Using the induction hypothesis, we find a (k − 2)-subtrestle
H of G of order at least min {bδk/2c, n}. The argument is similar to that in
Case 2, except we now look for a 2-extension in place of a 1-extension, and the
2-extension should add about double the amount of new vertices compared to
the requirement in Case 2.

Let H ′ be a maximal 2-extension of H and let x = |V (H ′)|−|V (H)|. If x ≥ δ,
then the order of the k-subtrestle H ′ is at least⌊

δk

2

⌋
+ δ =

⌊
δ(k + 2)

2

⌋
as required. We may thus assume that x ≤ δ − 1. Similarly, it may be assumed
that H ′ is not spanning.

As in Case 2, let (P1, . . . , Pm) be an ear sequence of H ′ and let m1,m2 and m3

be the number of long, intermediate and short paths in the sequence, respectively.
Since

x ≥
⌈
δ + 1

2

⌉
·m1 + 2m2 +m3, (2)

we have m1 ≤ 1 and m1 +m2 ≤ (δ − 1)/2.
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Let P be a longest H ′-ear. By Lemma 7(ii) and the fact that m1 ≤ 1, P is
not long.

Suppose that P is an intermediate path with its internal vertices contained
in a component K of G − V (H ′). Similarly to Case 2, we find that K contains
vertices u1, u2, each with at least δ/2 + 1 neighbors in H ′. Since none of the ears
determined by these vertices can be added to H ′ to produce a larger 2-extension
of H, we may assume that each vertex in NH′(u1) but one is an endvertex of two
paths among P1, . . . , Pm1+m2 . Hence

2(m1 +m2) ≥ 2 · δ
2
,

and it follows from (2) that x ≥ δ, in contradiction with our assumption.
Thus, P must be a short path. We let v be its internal vertex. By the

maximality of H ′, all neighbors of v except at most one are endvertices of two
paths among P1, . . . , Pm. It follows that

2(m1 +m2 +m3) ≥ 2dG(v)− 2. (3)

Dividing by 2 and subtracting from inequality (2), we find that

x− dG(v) + 1 ≥
⌈
δ − 1

2

⌉
·m1 +m2.

The left hand side is non-positive since x < δ and dG(v) ≥ δ. It follows that
m1 = m2 = 0. By (2) and (3),

δ > x ≥ m3 ≥ dG(v)− 1 ≥ δ − 1

and thus m = m3 = δ − 1 and dG(v) = δ.
Let W be the set of vertices of H ′ which are endvertices of two of the paths

P1, . . . , Pδ−1. By the above, W contains at least δ − 1 neighbors of v. Since
there are exactly δ − 1 paths, we obtain that |W | = δ − 1, W ( NG(v) and all
endvertices of the paths Pi (i = 1, . . . , δ− 1) are in W . This in particular implies
that δ ≥ 3.

Let the vertices of the path P1 be denoted by a, b, c in this order (thus, a, c ∈
W ) and let b′ be a neighbor of b outside W . Furthermore, let w be the (unique)
neighbor of v not in W . If we replace P1 in the ear sequence of H ′ by the paths
abb′ and cvw, we obtain a corresponding d-extension of H which is one vertex
larger than H ′, a contradiction with the maximality of H ′.
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