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PAIRS OF HEAVY SUBGRAPHS FOR HAMILTONICITY OF
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Abstract. Let G be a graph on n vertices. An induced subgraph H of G is called heavy if there
exist two nonadjacent vertices in H with degree sum at least n in G. We say that G is H-heavy if
every induced subgraph of G isomorphic to H is heavy. For a family H of graphs, G is called H-heavy
if G is H-heavy for every H ∈ H. In this paper we characterize all connected graphs R and S other
than P3 (the path on three vertices) such that every 2-connected {R, S}-heavy graph is Hamiltonian.
This extends several previous results on forbidden subgraph conditions for Hamiltonian graphs.
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1. Introduction. We use Bondy and Murty [2] for terminology and notation
not defined here and consider finite simple graphs only.

Let G be a graph. For a vertex v ∈ V (G) and a subgraph H of G, we use NH(v)
to denote the set, and dH(v) the number, of neighbors of v in H . We call dH(v) the
degree of v in H . For x, y ∈ V (G), an (x, y)-path is a path P connecting x and y; the
vertex x will be called the origin and y the terminus of P . If x, y ∈ V (H), the distance
between x and y in H , denoted dH(x, y), is the length of a shortest (x, y)-path in H .
When no confusion occurs, we will denote NG(v), dG(v), and dG(x, y) by N(v), d(v),
and d(x, y), respectively.

Let G be a graph on n vertices. If a subgraphG′ of G contains all edges xy ∈ E(G)
with x, y ∈ V (G′), then G′ is called an induced subgraph of G. For a given graph H ,
we say that G is H-free if G does not contain an induced subgraph isomorphic to H .
For a family H of graphs, G is called H-free if G is H-free for every H ∈ H. If H
is an induced subgraph of G, we say that H is heavy if there are two nonadjacent
vertices in V (H) with degree sum at least n in G. The graph G is called H-heavy if
every induced subgraph of G isomorphic to H is heavy. For a family H of graphs, G
is called H-heavy if G is H-heavy for every H ∈ H. Note that an H-free graph is also
H-heavy, and if H1 is an induced subgraph of H2, then an H1-free (H1-heavy) graph
is also H2-free (H2-heavy).

The graph K1,3 is called the claw, its (only) vertex of degree 3 is called its center,
and the other vertices are the end vertices. In this paper, instead of K1,3-free (K1,3-
heavy), we use the terminology claw-free (claw-heavy).
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Fig. 1.1. Graphs Pi, C3, Zi, B,N , and W .

The following characterization of pairs of forbidden subgraphs for the existence
of Hamilton cycles in graphs is well known.

Theorem 1.1 (see Bedrossian [1]). Let R and S be connected graphs with R,S �=
P3, and let G be a 2-connected graph. Then G being {R,S}-free implies that G is
Hamiltonian if and only if (up to symmetry) R = K1,3 and S = P4, P5, P6, C3, Z1, Z2,
B,N , or W (see Figure 1.1).

Our aim in this paper is to consider the corresponding heavy subgraph conditions
for a graph to be Hamiltonian. First, we notice that every 2-connected P3-heavy graph
contains a Hamilton cycle. This can be easily deduced from the following result.

Theorem 1.2 (see Fan [5]). Let G be a 2-connected graph. If max{d(u), d(v)} ≥
n/2 for every pair of vertices at distance 2 in G, then G is Hamiltonian.

It is not difficult to see that P3 is the only connected graph S such that every
2-connected S-heavy graph is Hamiltonian. So we have the following problem.

Problem 1.1. Which two connected graphs R and S other than P3 imply that
every 2-connected {R,S}-heavy graph is Hamiltonian?

By Theorem 1.1, we get that (up to symmetry) R = K1,3, and S must be one of
the graphs P4, P5, P6, C3, Z1, Z2, B,N , or W .

In this paper we prove the following results.
Theorem 1.3. If G is a 2-connected {K1,3,W}-heavy graph, then G is

Hamiltonian.
Theorem 1.4. If G is a 2-connected {K1,3, N}-heavy graph, then G is

Hamiltonian.
At the same time, we find a 2-connected {K1,3, P6}-heavy graph which is not

Hamiltonian (see Figure 1.2).
We can also construct a 2-connected, claw-free, and P6-heavy graph which is not

Hamiltonian. This can be shown as follows: Let G be the graph in Figure 1.2, where
r ≥ 15 is an integer divisible by 3. Let V1, V2, V3 be a balanced partition of Kr, and
G′ be the graph obtained from G by deleting all the edges in

⋃3
i=1{xiv : v ∈ Vi}.

Then G′ is a 2-connected, claw-free, and P6-heavy graph which is not Hamiltonian.
Note that W contains induced copies of P4, P5, C3, Z1, Z2, and B. So we have the

following result.
Theorem 1.5. Let R and S be connected graphs with R,S �= P3, and let G be a

2-connected graph. Then G being {R,S}-heavy implies that G is Hamiltonian if and
only if (up to symmetry) R = K1,3 and S = P4, P5, C3, Z1, Z2, B,N , or W .
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Fig. 1.2. A 2-connected {K1,3, P6}-heavy non-Hamiltonian graph (r ≥ 5).

Fig. 1.3. Graphs D and H.

Thus, Theorem 1.5 gives a complete answer to Problem 1.1.
For claw-heavy graphs, Chen, Zhang, and Qiao get the following result.
Theorem 1.6 (see Chen, Zhang, and Qiao [4]). Let G be a 2-connected graph. If

G is claw-heavy and, moreover, {P7, D}-free or {P7, H}-free, then G is Hamiltonian
(see Figure 1.3).

It is clear that every P6-free graph is also {P7, D}-free. Thus we have that every
2-connected claw-heavy and P6-free graph is Hamiltonian. Together with Theorems
1.3 and 1.4, we have the following characterization.

Theorem 1.7. Let S be a connected graph with S �= P3, and let G be a 2-
connected claw-heavy graph. Then G being S-free implies that G is Hamiltonian if
and only if S = P4, P5, P6, C3, Z1, Z2, B,N , or W .

The necessity of this theorem follows from Theorem 1.1 immediately.
It is known that the only 2-connected {K1,3, Z3}-free non-Hamiltonian graphs

have nine vertices (see [6]); hence for n ≥ 10 every 2-connected {K1,3, Z3}-free graph
of order n is also Hamiltonian. But this is not true for {K1,3, Z3}-heavy graphs. A
counterexample is shown in Figure 1.4.

Instead of Theorems 1.3 and 1.4, we prove the following two stronger results.
Theorem 1.8. If G is a 2-connected {K1,3, N1,1,2, D}-heavy graph, then G is

Hamiltonian (see Figure 1.5).
Theorem 1.9. If G is a 2-connected {K1,3, N1,1,2, H1,1}-heavy graph, then G is

Hamiltonian (see Figure 1.5).
Since a W -heavy graph is also {N1,1,2, D}-heavy, Theorem 1.3 can be deduced

from Theorem 1.8. Similarly, since an N -heavy graph is also {N1,1,2, H1,1}-heavy,
Theorem 1.4 can be deduced from Theorem 1.9.

Note that Brousek [3] gave a complete characterization of triples of connected
graphs K1,3, X, Y such that a graph G being 2-connected and {K1,3, X, Y }-free



PAIRS OF HEAVY SUBGRAPHS FOR HAMILTONICITY 1091

Fig. 1.4. A 2-connected {K1,3, Z3}-heavy non-Hamiltonian graph (k ≥ 7, r ≥ k + 4).

Fig. 1.5. Graphs N1,1,2 and H1,1.

implies that G is Hamiltonian. Clearly, if K1,3, S, T is a triple such that every 2-
connected {K1,3, S, T }-heavy graph is Hamiltonian, then, for some triple K1,3, X, Y
of [3], S and T are induced subgraphs of X and Y , respectively. (Of course, the triples
of Theorems 1.8 and 1.9 have this property.) We refer an interested reader to [3] for
more details.

2. Some preliminaries. We first give some additional terminology and notation.
Let G be a graph and X be a subset of V (G). The subgraph of G induced by the

set X is denoted G[X ]. We use G−X to denote the subgraph induced by V (G) \X .
Throughout this paper, k and � will always denote positive integers, and we use s

and t to denote integers which may be nonpositive. For s ≤ t, we use [xs, xt] to denote
the set {xs, xs+1, . . . , xt}. If [xs, xt] is a subset of the vertex set of a graph G, we use
G[xs, xt], instead of G[[xs, xt]], to denote the subgraph induced by [xs, xt] in G.

For a path P and x, y ∈ V (P ), P [x, y] denotes the subpath of P from x to y.

Similarly, for a cycle C with a given orientation and x, y ∈ V (C),
−→
C [x, y] or

←−
C [y, x]

denotes the (x, y)-path on C traversed in the same or opposite direction with respect
to the given orientation of C.

Let G be a graph and x1, x2, y1, y2 ∈ V (G) with x1 �= x2 and y1 �= y2. We define
an ({x1, x2}, {y1, y2})-disjoint path pair, or briefly an (x1x2, y1y2)-pair, as a union of
two vertex-disjoint paths P and Q such that
(1) the origins of P and Q are in {x1, x2}, and
(2) the termini of P and Q are in {y1, y2}.

If G is a graph on n ≥ 2 vertices, x ∈ V (G), and a graph G′ is obtained from G
by adding a (new) vertex y and a pair of edges yx, yz, where z is an arbitrary vertex
of G, z �= x, we say that G′ is a 1-extension of G at x to y. Similarly, if x1, x2 ∈ V (G),
x1 �= x2, then the graph G′ obtained from G by adding two (new) vertices y1, y2 and
the edges y1x1, y2x2, and y1y2 is called the 2-extension of G at (x1, x2) to (y1, y2).
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Let G be a graph, and let u, v, w ∈ V (G) be distinct vertices of G. We say that
G is (u, v, w)-composed (or briefly composed) if G has a spanning subgraph D (called
the carrier of G) such that there is an ordering v−k, . . . , v0, . . . , v� (k, � ≥ 1) of V (D)
(=V (G)) and a sequence of graphs D1, . . . , Dr (r ≥ 1) such that

(1) u = v−k, v = v0, w = v�,

(2) D1 is a triangle with V (D1) = {v−1, v0, v1},
(3) V (Di) = [v−ki , v�i ] for some ki, �i, 1 ≤ ki ≤ k, 1 ≤ �i ≤ �, and Di+1, 1 ≤ i ≤

r − 1, satisfies one of the following:

(a) Di+1 is a 1-extension of Di at v−ki to v−ki−1 or at v�i to v�i+1,

(b) Di+1 is a 2-extension of Di at (v−ki , v�i) to (v−ki−1, v�i+1),

(4) Dr = D.
The ordering v−k, . . . , v0, . . . , v� will be called a canonical ordering and the se-

quence D1, . . . , Dr a canonical sequence of D (and also of G). Note that a composed
graph G can have several carriers, canonical orderings, and canonical sequences.
Clearly, a composed graph G and its carrier D are 2-connected; for any canonical
ordering, P = v−k · · · v0 · · · v� is a Hamilton path in D (called a canonical path);
and if D1, . . . , Dr is a canonical sequence, then any Di is (v−ki , v0, v�i)-composed,
i = 1, . . . , r. Note that a (u, v, w)-composed graph is also (w, v, u)-composed.

Now we give a lemma on composed graphs which will be needed in our proofs.
Lemma 2.1. Let G be a composed graph, and let D and v−k, . . . , v0, . . . , v� be a

carrier and a canonical ordering of G. Then

(1) D has a Hamilton (v0, v−k)-path,

(2) for every vs ∈ V (G) \ {v−k}, D has a spanning (v0v�, vsv−k)-pair.
Proof. Let D1, . . . , Dr be a canonical sequence and Q the canonical path of D

corresponding to the given ordering and, for every s ∈ [−k, �] \ {0}, let ŝ, 1 ≤ ŝ ≤ r,
be the smallest integer for which vs ∈ V (Dŝ). Clearly, dDŝ

(vs) = 2.
Now we prove (1) by induction on |V (D)|. If |V (D)| = 3, the assertion is trivially

true. Suppose now that |V (D)| ≥ 4 and that the assertion is true for every graph
with at most |V (D)|− 1 vertices. By the definition of a carrier, we have the following
two cases.

Case 1. V (Dr−1) = [v−k+1, v�] and D is a 1-extension of Dr−1 at v−k+1 to v−k.
By the induction hypothesis, Dr−1 has a Hamilton (v0, v−k+1)-path P ′. Then

P = v0P
′v−k+1v−k is a Hamilton (v0, v−k)-path in D.

Case 2. V (Dr−1) = [v−k, v�−1] and D is a 1-extension of Dr−1 at v�−1 to v�, or
V (Dr−1) = [v−k+1, v�−1] and D is a 2-extension of Dr−1 at (v−k+1, v�−1) to (v−k, v�).
In this case, v� has a neighbor vs other than v�−1, where s ∈ [−k, �− 2].

Case 2.1. s ∈ [−k,−2]. In this case s + 1 ∈ [−k + 1,−1]. Consider the graph
D′ = D

ŝ+1
. Let V (D′) = [vs+1, vt], where t > 0. By the induction hypothesis, there

exists a Hamilton (v0, vt)-path P ′ of D′. Then the path P = P ′Q[vt, v�]v�vsQ[vs, v−k]
is a Hamilton (v0, v−k)-path of D.

Case 2.2. s = −1. In this case, the path P = Q[v0, v�]v�v−1Q[v−1, v−k] is a
Hamilton (v0, v−k)-path of D.

Case 2.3. s ∈ [0, l − 2]. In this case s + 1 ∈ [1, � − 1]. Consider the graph
D′ = D

ŝ+1
. Let V (D′) = [vt, vs+1], where t < 0 and dD′(vs+1) = 2. By the induction

hypothesis, there exists a Hamilton (v0, vt)-path P ′ of D′, and the edge vsvs+1 is in
E(P ′) by the fact dD′(vs+1) = 2. Thus the path P = P ′ − vsvs+1 ∪Q[vs+1, vl]vlvs ∪
Q[vt, v−k] is a Hamilton (v0, v−k)-path of G.

So the proof of (1) is complete. Now we prove (2). We distinguish the following
three cases.
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Case 1. s ∈ [−k + 1, 0]. In this case, s − 1 ∈ [−k,−1]. Consider the graph
D′ = D

ŝ−1
. Let V (D′) = [vs−1, vt], where t > 0 and dD′(vs−1) = 2. By (1), there

exists a Hamilton (v0, vt)-path P ′ of D′ and vs−1vs ∈ E(P ′). Thus R′ = P ′ − vs−1vs
is a spanning (v0vt, vsvs−1)-pair of D′, and R = R′ ∪ Q[vt, vl] ∪ Q[vs−1, v−k] is a
spanning (v0v�, vsv−k)-pair of D.

Case 2. s = 1. In this case, R = Q[v0, v−k]∪Q[v1, v�] is a spanning (v0v�, v1v−k)-
pair of D.

Case 3. s ∈ [2, �]. In this case, s− 1 ∈ [1, l− 1]. Consider the graph D′ = D
ŝ−1

.

Let V (D′) = [vt, vs−1], where t < 0. By (1), there exists a Hamilton (v0, vt)-path P ′

of G′. Thus P1 = P ′Q[vt, v−k] and P2 = Q[vs, v�] form a spanning (v0v�, vsv−k)-pair
of D.

The proof is complete.
Let G be a graph on n vertices and k ≥ 3 an integer. A sequence of vertices

C = v1v2 · · · vkv1 such that for all i ∈ [1, k] either vivi+1 ∈ E(G) or d(vi)+d(vi+1) ≥ n
(indices are taken modulo k) is called an Ore-cycle or briefly, o-cycle of G. The deficit
of an o-cycle C is the integer def(C) = |{i ∈ [1, k] : vivi+1 /∈ E(G)}|. Thus, a cycle is
an o-cycle of deficit 0. We define an o-path of G similarly.

Now, we prove the following lemma on o-cycles.
Lemma 2.2. Let G be a graph, and let C′ be an o-cycle in G. Then there is a

cycle C in G such that V (C′) ⊂ V (C).
Proof. Let C1 be an o-cycle in G such that V (C′) ⊂ V (C1) and def(C1) is smallest

possible, and suppose, to the contrary, that def(C1) ≥ 1. Without loss of generality
suppose that C1 = v1v2 . . . vkv1, where v1vk /∈ E(G) and d(v1) + d(vk) ≥ n. We use
P to denote the o-path P = v1v2 · · · vk.

If v1 and vk have a common neighbor x ∈ V (G) \ V (P ), then C2 = v1Pvkxv1
is an o-cycle in G with V (C′) ⊂ V (C2) and def(C2) < def(C1), a contradiction.
Hence NG−P (v1) ∩ NG−P (vk) = ∅. Then we have dP (v1) + dP (vk) ≥ |V (P )| since
d(v1) + d(vk) ≥ n. Thus, there exists i ∈ [2, k − 1] such that vi ∈ NP (v1) and
vi−1 ∈ NP (vk), and then again C2 = v1P [v1, vi−1]vi−1vkP [vk, vi]viv1 is an o-cycle
with V (C′) ⊂ V (C2) and def(C2) < def(C1), a contradiction.

Note that Lemma 2.2 immediately implies that if P is an (x, y)-path or an o-path
in G with |V (P )| larger than the length of a longest cycle in G, then xy /∈ E(G) and
d(x) + d(y) < n.

In the following, we denote Ẽ(G) = {uv : uv ∈ E(G) or d(u) + d(v) ≥ n}.
Let C be a cycle in G; x, x1, x2 ∈ V (C) be three distinct vertices; and set X =

V (Q), where Q is the (x1, x2)-path on C containing x. We say that the pair of vertices
(x1, x2) is x-good on C if for some j ∈ {1, 2} there is a vertex x′ ∈ X \ {xj} such
that

(1) there is an (x, x3−j)-path P such that V (P ) = X \ {xj},
(2) there is an (xx3−j , x

′xj)-pair D such that V (D) = X ,

(3) d(xj) + d(x′) ≥ n.

Lemma 2.3. Let G be a graph and C be a cycle of G with a given orientation.
Let x, y ∈ V (C), and let R be an (x, y)-path in G which is internally disjoint from C.
If there are vertices x1, x2, y1, y2 ∈ V (C) \ {x, y} such that

(1) x2, x, x1, y1, y, y2 appear in this order along
−→
C (possibly x1 = y1 or x2 = y2),

(2) (x1, x2) is x-good on C,

(3) (y1, y2) is y-good on C,

then there is a cycle C′ in G such that V (C) ∪ V (R) ⊂ V (C′).
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Proof. Assume the opposite. Let P1 and D1 be the path and disjoint path pair
associated with x, and P2 and D2 those associated with y; and let Q1 =

−→
C [x1, y1]

and Q2 =
←−
C [x2, y2].

By the definition of an x-good pair, without loss of generality, we can assume
that P1 is an (x, x1)-path, D1 is an (xx1, x

′x2)-pair, and d(x2) + d(x′) ≥ n.
Case 1. P2 is a (y, y1)-path, D2 is a (yy1, y

′y2)-pair, and d(y2) + d(y′) ≥ n.
In this case the path P = Q2∪D2∪R∪P1∪Q1 is an (x2, y

′)-path which contains
all the vertices in V (C) ∪ V (R), and P ′ = Q2 ∪D1 ∪R ∪ P2 ∪ Q1 is an (x′, y2)-path
which contains all the vertices in V (C)∪V (R). Thus, by Lemma 2.2, d(x2)+d(y′) < n
and d(x′) + d(y2) < n, a contradiction to d(x2) + d(x′) ≥ n and d(y2) + d(y′) ≥ n.

Case 2. P2 is a (y, y2)-path, D2 is a (yy2, y
′y1)-pair, and d(y1) + d(y′) ≥ n.

Case 2.1. The (xx1, x
′x2)-pair D1 is formed by an (x, x2)-path and an (x1, x

′)-
path.

In this case, the path P = Q2∪P2∪R∪P1∪Q1 is an (x2, y1)-path which contains
all the vertices in V (C)∪V (R), and the path P ′ = D1∪Q1∪Q2∪R∪D2 is an (x′, y′)-
path which contains all the vertices in V (C)∪V (R). By Lemma 2.2, d(x2)+d(y1) < n
and d(x′) + d(y′) < n, a contradiction.

Case 2.2. The (xx1, x
′x2)-pair D1 is formed by an (x, x′)-path and an (x1, x2)-

path.
Case 2.2.1. The (yy2, y

′y1)-pair D2 is formed by an (y, y1)-path and an (y2, y
′)-

path.
This case can be proved similarly as in Case 2.1.
Case 2.2.2. The (yy2, y

′y1)-pair D2 is formed by an (y, y′)-path and an (y1, y2)-
path.

In this case, the path P = Q2 ∪D2 ∪ R ∪ P1 ∪ Q1 is an (x2, y
′)-path containing

all vertices in V (C) ∪ V (R), and the path P ′ = Q2 ∪D1 ∪R ∪ P2 ∪Q1 is an (x′, y1)-
path containing all vertices in V (C) ∪ V (R). By Lemma 2.2, d(x2) + d(y′) < n and
d(x′) + d(y1) < n, a contradiction.

The proof is complete.

3. Proof of Theorem 1.8. Let C be a longest cycle of G. Set n = |V (G)| and
c = |V (C)|, and assume that G is not Hamiltonian, i.e., c < n. Then V (G)\V (C) �= ∅.
Since G is 2-connected, there exists a (u0, v0)-path with length at least 2 which is
internally disjoint from C, where u0, v0 ∈ V (C). Let R = z0z1z2 · · · zr+1, where
z0 = u0 and zr+1 = v0, be such a path, and choose R as short as possible. Let r1
and r2 denote the number of interior vertices in the two subpaths of C from u0 to
v0 (note that clearly r1 + r2 + 2 = c). We specify an orientation of C, and label the

vertices of C using two distinct notations ui and vi, −r2 ≤ i ≤ r1, such that
−→
C =

u0u1u2 · · ·ur1v0u−r2u−r2+1 · · ·u−1u0 and
←−
C = v0v1v2 · · · vr1u0v−r2v−r2+1 · · · v−1v0,

where u� = vr1+1−� and u−k = v−r2−1+k (see Figure 3.1). Let H be the component
of G− C which contains the vertices in [z1, zr].

Claim 1. Let x ∈ V (H) and y ∈ {u1, u−1, v1, v−1}. Then xy /∈ Ẽ(G).
Proof. Without loss of generality, we assume y = u1. Let P ′ be an (x, z1)-path

in H . Then P = P ′z1u0
←−
C [u0, u1] is an (x, y)-path which contains all the vertices in

V (C) ∪ V (P ′). By Lemma 2.2, we have xy /∈ Ẽ(G).

Claim 2. u1u−1 ∈ Ẽ(G), v1v−1 ∈ Ẽ(G).
Proof. If u1u−1 /∈ E(G), by Claim 1, the graph induced by {u0, z1, u1, u−1} is

a claw, where d(z1) + d(u±1) < n. Since G is a claw-heavy graph, we have that
d(u1) + d(u−1) ≥ n.

The second assertion can be proved similarly.
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Fig. 3.1. C ∪ R, the subgraph of G.

Claim 3. u1v−1 /∈ Ẽ(G), u−1v1 /∈ Ẽ(G), u0v±1 /∈ Ẽ(G), u±1v0 /∈ Ẽ(G).

Proof. Since P =
−→
C [u1, v0]R

←−
C [u0, v−1] is a (u1, v−1)-path which contains all the

vertices in V (C) ∪ V (R), we have u1v−1 /∈ Ẽ(G) by Lemma 2.2.

If u0v1 ∈ Ẽ(G), then C′ = −→C [u1, v1]v1u0R
−→
C [v0, u−1]u−1u1 is an o-cycle which

contains all the vertices of V (C) ∪ V (R). By Lemma 2.2, there exists a cycle which
contains all the vertices in V (C) ∪ V (R), a contradiction.

The other assertions can be proved similarly.

Claim 4. Either u1u−1 ∈ E(G) or v1v−1 ∈ E(G).

Proof. Assume the opposite. By Claim 2 we have d(u1) + d(u−1) ≥ n and
d(v1)+ d(v−1) ≥ n. By Claim 3, we have d(u1)+ d(v−1) < n and d(u−1)+ d(v1) < n,
a contradiction.

Now, we distinguish two cases.

Case 1. r ≥ 2, or r = 1 and u0v0 /∈ E(G).

By Claim 4, without loss of generality, we assume that u1u−1 ∈ E(G). Thus
G[u−1, u1] is (u−1, u0, u1)-composed.

Claim 5. z2u0 /∈ Ẽ(G).

Proof. By the choice of the path R, we have z2u0 /∈ E(G). Now we prove that
d(z2) + d(u0) < n.

Claim 5.1. Every neighbor of u0 is in V (C) ∪ V (H); every neighbor of z2 is in
V (C) ∪ V (H).

Proof. Assume the opposite. Let z′ ∈ V (H ′) be a neighbor of u0, where H ′ is
a component of G − C other than H . Then we have z′z1 /∈ E(G) and NG−C(z

′) ∩
NG−C(z1) = ∅.

By Claim 1, we have u1z1 /∈ Ẽ(G), and similarly u1z
′ /∈ Ẽ(G). Thus the graph

induced by {u0, u1, z1, z
′} is a claw, where d(u1) + d(z1) < n and d(u1) + d(z′) < n.

Then we have d(z1) + d(z′) ≥ n.

Since NG−C(z1)∩NG−C(z
′) = ∅, there exist two vertices x1, x2 ∈ V (C) such that

x1x2 ∈ E(
−→
C ) and z1x1, z

′x2 ∈ E(G). Thus P = z1x1
←−
C [x1, x2]x2z

′ is a (z1, z
′)-path

which contains all the vertices in V (C)∪ {z1, z′}. By Lemma 2.2, there exists a cycle
which contains all the vertices in V (C) ∪ {z1, z′}, a contradiction.
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If z2 = v0, the second assertion can be proved similarly, and if z2 �= v0, the
assertion is obvious.

Let h = |V (H)| and k = |NH(u0)|. Then we have dH(z2)+dH(u0) ≤ h+k. Since
z1 ∈ NH(u0), we have k ≥ 1. Let NH(u0) = {y1, y2, . . . , yk}, where y1 = z1.

Claim 5.2. yiyj ∈ Ẽ(G) for all 1 ≤ i < j ≤ k.

Proof. If yiyj /∈ E(G), then by Claim 1, the graph induced by {u0, u1, yi, yj} is
a claw, where d(yi) + d(u1) < n and d(yj) + d(u1) < n. Thus we have d(yi) + d(yj)
≥ n.

Now, let Q be the o-path Q = z2y1y2 · · · yku0. It is clear that R[z2, v0] and Q
are internally disjoint, and Q contains at least k vertices in V (H). In the following,

we use C′ to denote the cycle
−→
C [u1, u−1]u−1u1 if z2 �= v0, and to denote the o-cycle−→

C [u1, v1]v1v−1
−→
C [v−1, u−1]u−1u1 if z2 = v0.

By Claims 1 and 3, we have z2vr1 /∈ E(G), where vr1 = u1. Let v� be the last

vertex in
←−
C [v1, u1] such that z2v� ∈ E(G). If there are no neighbors of z2 in

←−
C [v1, u1],

then let v� = v0.

Claim 5.3. For every vertex v�′ ∈ N[v1,vr1 ]
(z2) ∪ {v0}, u0v�′+1 /∈ E(G).

Proof. By Claim 3, we have u0v1 /∈ E(G).

If z2v�′ ∈ E(G) and u0v�′+1 ∈ E(G), then C′′ =
−→
C′[v�′ , v�′+1]v�′+1u0Qz2v�′ is an

o-cycle which contains all the vertices in V (C) ∪ V (Q), a contradiction.

Claim 5.4. r1− � ≥ k+1, and for every vertex v�′ ∈ [v�+1, v�+k], u0v�′ /∈ E(G).
Proof. Assume the opposite. Let v�′ be the first vertex in [v�+1, vr1 ] such that

u0v�′ ∈ E(G), and let �′ − � < k + 1.

If v� = v0, then C′′ =
−→
C [v0, u−1]u−1u1

−→
C [u1, v�′ ]v�′u0QR[z2, v0] is an o-cycle

which contains all the vertices in V (C)\[v1, v�′−1]∪V (Q), and |V (C′′)| > c, a contra-
diction.

Thus, we assume that v� �= v0 and z2v� ∈ E(G). Then C′′ =
−→
C′[v�, v�′ ]v�′u0Qz2v�

is an o-cycle which contains all the vertices in V (C)\[v�+1, v�′−1]∪V (Q), and |V (C′′)| >
c, a contradiction.

Thus we have �′ − � ≥ k + 1. Note that u0vr1 ∈ E(G), and we have r1 − � ≥
k + 1.

Let d1 = |N[v1,vr1 ]
(z2) ∪ {v0}|, d2 = |N[v−r2 ,v−1](z2) ∪ {v0}|, d′1 = |N[v1,vr1 ]

(u0)|
and d′2 = |N[v−r2 ,v−1](u0)|. Then dC(z2) ≤ d1 + d2 − 1 and dC(u0) ≤ d′1 + d′2 + 1.

By Claims 5.3 and 5.4, we have d′1 ≤ r1−d1−k+1, and similarly, d′2 ≤ r2−d2−k+
1. Thus dC(z2)+dC(u0) ≤ r1+r2−2k+2 = c−2k. Note that dH(z2)+dH(u0) ≤ h+k.
By Claim 5.1, we have d(z2) + d(u0) ≤ c+ h− k < n.

Recall that G[u−1, u1] is (u−1, u0, u1)-composed. Now we prove the following
claims.

Claim 6. If G[u−k, u�] is (u−k, u0, u�)-composed with canonical ordering u−k,
u−k+1, . . . , u�, then k ≤ r2 − 2 and � ≤ r1 − 2.

Proof. Let D1, D2, . . . , Dr be a canonical sequence of G[u−k, u�] corresponding
to the canonical ordering u−k, u−k+1, . . . , u�. Suppose that k > r2 − 2. Consider
the graph D′ = D−̂r2+1

, where ̂−r2 + 1 is the smallest integer such that u−r2+1 ∈
V (D−̂r2+1

). Let V (D′) = [u−r2+1, u�′]. By Lemma 2.1, there exists a (u0, u�′)-path

P such that V (P ) = [u−r2+1, u�′]. Then C′ = v−1v0RP
−→
C [u�′ , v1]v1v−1 is an o-cycle

which contains all the vertices in V (C) ∪ V (R), a contradiction.

Claim 7. If G[u−k, u�] is (u−k, u0, u�)-composed with canonical ordering u−k,
u−k+1, . . . , u�, where k ≤ r2 − 2 and l ≤ r1 − 2, and any two nonadjacent vertices in
[u−k−1, u�+1] have degree sum less than n, then one of the following is true:
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(1) G[u−k−1, u�] is (u−k−1, u0, u�)-composed with canonical ordering u−k−1, u−k, . . . ,
u�,

(2) G[u−k, u�+1] is (u−k, u0, u�+1)-composed with canonical ordering u−k, u−k+1, . . . ,
u�+1,

(3) G[u−k−1, u�+1] is (u−k−1, u0, u�+1)-composed with canonical ordering u−k−1, u−k,
. . . , u�+1.

Proof. Assume the opposite, which implies that for every vertex us ∈ [u−k+1, u�],
u−k−1us /∈ E(G), and for every vertex us ∈ [u−k, u�−1], we have u�+1us /∈ E(G) and
u−k−1u�+1 /∈ E(G).

Claim 7.1. Let z ∈ {z1, z2} and us ∈ [u−k−1, u�+1]\{u0}. Then zus /∈ Ẽ(G).

Proof. Without loss of generality, we assume that s > 0. If s = 1, the assertion
is true by Claims 1 and 3. So we assume that s ∈ [2, � + 1] and s − 1 ∈ [1, �]. By
the definition of a composed graph, there exists t ∈ [−k,−1] such that G[ut, us−1]
is (ut, u0, us−1)-composed. By Lemma 2.1, there exists a (u0, ut)-path P ′ such that
V (P ′) = [ut, us−1].

If z �= v0, then P = R[z, u0]P
′←−C [ut, us] is a (z, us)-path which contains all the

vertices in V (C) ∪ {z}. By Lemma 2.2, we have zus /∈ Ẽ(G).

If z = v0 and v0us ∈ Ẽ(G), then C′ = RP ′←−C [ut, v−1]v−1v1
←−
C [v1, us]usv0 is an

o-cycle which contains all the vertices in V (C) ∪ V (R), a contradiction.

Let G′ = G[[u−k−1, u�] ∪ {z1, z2}] and G′′ = G[[u−k−1, u�+1] ∪ {z1, z2}].
Claim 7.2. G′′, and then G′, is {K1,3, N1,1,2}-free.
Proof. By Claims 5 and 7.1, and the condition that any two nonadjacent vertices in

[u−k−1, u�+1] have degree sum less than n, we have that any two nonadjacent vertices
in G′′ have degree sum less than n. Since G (and then G′′) is {K1,3, N1,1,2}-heavy,
we have that G′′ is {K1,3, N1,1,2}-free.

Claim 7.3. NG′(u0)\{z1} is a clique.

Proof. If there are two vertices x, x′ ∈ NG′(u0)\{z1} such that xx′ /∈ E(G′), then
the graph induced by {u0, z1, x, x

′} is a claw, a contradiction.

Now, we define Ni = {x ∈ V (G′) : dG′(x, u−k−1) = i}. Then we have N0 =
{u−k−1}, N1 = {u−k}, and N2 = NG′(u−k)\{u−k−1}.

By the definition of a composed graph, we have |N2| ≥ 2. If there are two vertices
x, x′ ∈ N2 such that xx′ /∈ E(G′), then the graph induced by {u−k, u−k−1, x, x

′} is a
claw, a contradiction. Thus, N2 is a clique.

We assume u0 ∈ Nj , where j ≥ 2. Then z1 ∈ Nj+1 and z2 ∈ Nj+2.

If |Ni| = 1 for some i ∈ [2, j − 1], say, Ni = {x}, then x is a cut vertex of the
graph G[u−k, ul]. By the definition of a composed graph, G[u−k, ul] is 2-connected.
This implies |Ni| ≥ 2 for every i ∈ [2, j − 1].

Claim 7.4. For i ∈ [1, j], Ni is a clique.

Proof. We prove this claim by induction on i. For i = 1, 2, the claim is true by the
analysis above. So we assume that 3 ≤ i ≤ j, and we have thatNi−3, Ni−2, Ni−1, Ni+1,
and Ni+2 is nonempty, and |Ni−1| ≥ 2.

First we choose a vertex x ∈ Ni which has a neighbor y ∈ Ni+1 such that it has
a neighbor z ∈ Ni+2. We prove that for every x′ ∈ Ni, xx

′ ∈ E(G). We assume that
xx′ /∈ E(G).

If x′y ∈ E(G), then the graph induced by {y, x, x′, z} is a claw, a contradiction.
Thus, we have x′y /∈ E(G). If x and x′ have a common neighbor in Ni−1, denote it by
w; then let v be a neighbor of w in Ni−2, and the graph induced by {w, v, x, x′} is a
claw, a contradiction. Thus we have that x and x′ have no common neighbors in Ni−1.
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Let w be a neighbor of x in Ni−1, and w′ be a neighbor of x′ in Ni−1. Then
xw′, x′w /∈ E(G). Let v be a neighbor of w in Ni−2, and u be a neighbor of v in Ni−3.
If w′v /∈ E(G), then the graph induced by {w, v, w′, x} is a claw, a contradiction.
Thus we have w′v ∈ E(G), and then the graph induced by {v, u, w′, x′, w, x, y} is an
N1,1,2, a contradiction.

Thus we have xx′ ∈ E(G) for every x′ ∈ Ni.
Now, let x′ and x′′ be two vertices in Ni other than x such that x′x′′ /∈ E(G).

We have xx′, xx′′ ∈ E(G).
If x′y ∈ E(G), then similarly to the case of x, we have x′x′′ ∈ E(G), a contradic-

tion. Thus we have x′y /∈ E(G). Similarly, x′′y /∈ E(G). Then the graph induced by
{x, x′, x′′, y} is a claw, a contradiction.

Thus, Ni is a clique.
If there exists some vertex y ∈ Nj+1 other than z1, then we have yu0 /∈ E(G) by

Claim 7.3. Let x be a neighbor of y in Nj , w be a neighbor of u0 in Nj−1, and v be
a neighbor of w in Nj−2. Then xu0 ∈ E(G) by Claim 7.4 and xw ∈ E(G) by Claim
7.3. Thus the graph induced by {w, v, x, y, u0, z1, z2} is an N1,1,2, a contradiction. So

we assume that all vertices in [u−k, u�] are in
⋃j

i=1 Ni.
If u� ∈ Nj , then let w be a neighbor of u0 in Nj−1, and v be a neighbor of w in

Nj−2. Then the graph induced by {w, v, u0, z1, u�, u�+1} is an N1,1,2, a contradiction.
Thus we have that u� /∈ Nj and then j ≥ 3.

Let u� ∈ Ni, where i ∈ [2, j − 1]. If u� has a neighbor in Ni+1, then let y be a
neighbor of u� in Ni+1, and w be a neighbor of u� in Ni−1. Then the graph induced by
{u�, w, y, u�+1} is a claw, a contradiction. So we have that u� has no neighbors inNi+1.

Let x ∈ Ni be a vertex other than u� which has a neighbor y in Ni+1 such
that it has a neighbor z in Ni+2. Let w be a neighbor of x in Ni−1, and v be a
neighbor of w in Ni−2. If u�w /∈ E(G), then the graph induced by {x,w, u�, y} is
a claw, a contradiction. So we have that u�w ∈ E(G). Then the graph induced by
{w, v, u�, u�+1, x, y, z} is an N1,1,2, a contradiction.

Thus the claim holds.
Now we choose k, � such that

(1) G[u−k, u�] is (u−k, u0, u�)-composed with canonical ordering u−k, u−k+1, . . . , u�;

(2) any two nonadjacent vertices in [u−k, u�] have degree sum less than n; and

(3) k + � is as big as possible.

By Claim 7, we have that there exists a vertex us ∈ [u−k+1, u�] such that
d(u−k−1) + d(us) ≥ n, or there exists a vertex us ∈ [u−k, u�−1] such that d(us) +
d(u�+1) ≥ n, or d(u−k−1) + d(u�+1) ≥ n. Thus, we have the next result.

Claim 8. (u−k−1, u�) or (u−k, u�+1) or (u−k−1, u�+1) is u0-good on C.
Proof. If there exists a vertex us ∈ [u−k+1, u�] such that d(u−k−1) + d(us) ≥ n,

then, by Lemma 2.1, there exists a (u0, u�)-path P such that V (P ) = [u−k, u�], there
exists a (u0u�, usu−k)-pair D

′ such that V (D′) = [u−k, u�], and D = D′ + u−ku−k−1

is a (u0u�, usu−k−1)-pair such that V (D) = [u−k−1, u�]. Thus (u−k−1, u�) is u0-good
on C.

If there exists a vertex us ∈ [u−k, u�−1] such that d(us) + d(u�+1) ≥ n, we can
prove the result similarly.

If d(u−k−1) + d(u�+1) ≥ n, then by Lemma 2.1, there exists a (u0, u�)-path
P ′ such that V (P ′) = [u−k, u�], and there exists a (u0, u−k)-path P ′′ such that
V (P ′′) = [u−k, u�]. Then P = P ′u1u�+1 is a (u0, u�+1)-path such that V (P ) =
[u−k, u�+1], and D = P ′′u−ku−k−1 ∪ u�+1 is a (u0u�+1, u�+1u−k−1)-pair such that
V (D) = [u−k−1, u�+1]. Thus (u−k−1, u�+1) is u0-good on C.
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Claim 9. There exist v−k′ ∈ V (
−→
C [v−1, u−k−1]) and v�′ ∈ V (

←−
C [v1, u�+1]) such

that (v−k′ , v�′) is is v0-good on C.

Proof. By Claim 6, we have k ≤ r2 − 2 and l ≤ r1 − 2.

If v1v−1 /∈ E(G), then by Claim 2, d(v1) + d(v−1) ≥ n. Then P = v0v1 is a
(v0, v1)-path and D = v0v−1 ∪ v1 is a (v0v1, v−1v1)-pair. Thus we have that (v−1, v1)
is v0-good on C.

Now we assume that v1v−1 ∈ E(G), and then G[v−1, v1] is (v−1, v0, v1)-composed.

Let r′2 = r2 − k and r′1 = r1 − �.

Claim 9.1. If G[v−k′ , v�′ ] is (v−k′ , v0, v�′)-composed with canonical ordering
v−k′ , v−k′+1, . . . , v�′ , then k′ ≤ r′2 − 1 and �′ ≤ r′1 − 1.

Proof. Let D1, D2, . . . , Dr be a canonical sequence of G[v−k′ , v�′ ] corresponding
to the canonical ordering v−k′ , v−k′+1, . . . , v�′ . Suppose that k′ > r′2 − 1. Consider

the graph D′ = D−̂r′
2

, where −̂r′2 is the smallest integer such that v−r′2 ∈ V (D−̂r′
2

).

Let V (D′) = [v−r′2 , v�′′ ]. By Lemma 2.1, there exists a (v0, v�′′)-path P such that

V (P ) = [v−r′
2
, u�′′ ]. Then C′ = P

−→
C [u�, v�′′ ]P

′R is a cycle which contains all the
vertices in V (C) ∪ V (R), a contradiction.

In a way similar to Claim 7, we have the next claim.

Claim 9.2. If G[v−k′ , v�′ ] is (v−k′ , v0, v�′)-composed with canonical ordering
v−k′ , v−k′+1, . . . , v�′ , where k′ ≤ r′2 − 1 and � ≤ r′1 − 1, and any two nonadjacent
vertices in [v−k′−1, v�′+1] have degree sum less than n, then one of the following is
true:

(1) G[v−k′−1, v�′ ] is (v−k′−1, v0, v�′)-composed with canonical ordering v−k′−1, v−k′ ,
. . . , v�′ ,

(2) G[v−k′ , vl′+1] is (v−k′ , v0, v�′+1)-composed with canonical ordering v−k′ , v−k′+1,
. . . , v�′+1,

(3) G[v−k′−1, vl′+1] is (v−k′−1, v0, v�′+1)-composed with canonical ordering v−k′−1,
v−k′ , . . . , v�′+1.

Now we choose k′, �′ such that

(1) G[v−k′ , v�′ ] is (v−k′ , v0, v�′)-composed with canonical ordering v−k′ , v−k′+1, . . . ,
v�′ ;

(2) any two nonadjacent vertices in [v−k′ , v�′ ] have degree sum less than n; and

(3) k′ + �′ is as big as possible.

In a way similar to Claim 8, we have that (v−k′−1, vl′), (v−k′ , vl′+1), or (v−k′−1, vl′+1)
is v0-good on C.

From Claims 8 and 9, we get that there exists a cycle which contains all the
vertices in V (C) ∪ V (R) by Lemma 2.3, a contradiction.

Case 2. r = 1 and u0v0 ∈ E(G). We have u0u−1 ∈ E(G) and u0u−r2 /∈ E(G),

where u−r2 = v−1. Let u−k−1 be the first vertex in
←−
C [u−1, v−1] such that u0u−k−1 /∈

E(G). Then k ≤ r2 − 1.

Similarly, let v�+1 be the first vertex in
←−
C [v1, u1] such that v0v�+1 /∈ E(G). Then

� ≤ r1 − 1.

Claim 10. Let x ∈ [u−k−1, u−1] and y ∈ [v1, v�+1]. Then

(1) xz1, xv0 /∈ Ẽ(G),

(2) yz1, yu0 /∈ Ẽ(G),

(3) xy /∈ Ẽ(G).
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Proof. (1) If x = u−1, then by Claims 1 and 3 we have u−1z1, u−1v0 /∈ Ẽ(G). So
we assume that x = u−k′ , where −k′ ∈ [−k − 1,−2] and u0u−k′+1 ∈ E(G).

If u−k′z1 ∈ Ẽ(G), then C′ = u0u−k′+1
−→
C [u−k′+1, u−1]u−1u1

−→
C [u1, u−k′ ]u−k′z1u0

is an o-cycle which contains all the vertices in V (C) ∪ V (R), a contradiction.

If u−k′v0 ∈ Ẽ(G), then C′ = u0u−k′+1
−→
C [u−k′+1, u−1]u−1u1

−→
C [u1, v1]v1v−1

−→
C [v−1,

u−k′ ] u−k′v0R is an o-cycle which contains all the vertices in V (C) ∪ V (R), a
contradiction.

The assertion (2) can be proved similarly.

(3) If x = u−1 and y = v1, then by Claim 3, we have xy /∈ Ẽ(G).

If u−k′v1 ∈ Ẽ(G), where k′ ∈ [2, k+1], then C′ = u0R
−→
C [v0, u−k′ ]u−k′v1

←−
C [v1, u1]

u1u−1
←−
C [u−1, u−k′+1]u−k′+1u0 is an o-cycle which contains all the vertices in V (C)∪

V (R), a contradiction.

If u−1v�′ ∈ Ẽ(G), where �′ ∈ [2, �+ 1], then we can prove the result similarly.

If u−k′v�′ ∈ Ẽ(G), where k′ ∈ [2, k + 1] and �′ ∈ [2, � + 1], then C′ = u0u−k′+1−→
C [u−k′+1, u−1]u−1u1

−→
C [u1, vl′ ]vl′u−k′

←−
C [u−k′ , v−1]v−1v1

←−
C [v1, vl′−1]vl′−1v0R is an o-

cycle which contains all the vertices in V (C) ∪ V (R), a contradiction.

Claim 11. Either u−k−1u0 /∈ Ẽ(G) or v�+1v0 /∈ Ẽ(G).
Proof. Assume the opposite. Since u−k−1u0, v�+1v0 /∈ E(G), we have d(u−k−1)+

d(u0) ≥ n and d(v�+1) + d(v0) ≥ n. By Claim 10, we have d(u0) + d(v�+1) < n and
d(v0) + d(u−k−1) < n, a contradiction.

Without loss of generality, we assume that u−k−1u0 /∈ Ẽ(G). If v�+1v0 /∈ Ẽ(G),
then the subgraph induced by {z1, v0, v�, v�+1, u0, u−k, u−k−1} is a D which is not
heavy, a contradiction. Since v0v�+1 /∈ E(G), we have d(v0) + d(v�+1) ≥ n.

Claim 12. Either (v−1, v1) or (v−1, v�+1) is v0-good on C.
Proof. If v1v−1 /∈ E(G), then, by Claim 2, d(v1) + d(v−1) ≥ n. Then P = v0v1 is

a (v0, v1)-path and D = v0v−1 ∪ v1 is a (v0v1, v−1v1)-pair. Thus, (v−1, v1) is v0-good
on C.

If v1v−1 ∈ E(G), then P = v0v�
−→
C [v�, v1]v1v−1 is a (v0, v−1)-path and D =

v0 ∪ v−1v1
←−
C [v1, v�+1] is a (v0v−1, v0vl+1)-pair. Since d(v0) + d(v�+1) ≥ n, we have

that (v−1, v�+1) is v0-good on C.
Claim 13. If G[u−k′ , u�′ ] is (u−k′ , u0, u�′)-composed with canonical ordering

u−k′ , u−k′+1, . . . , u�′ , then k′ ≤ r2 − 2 and �′ ≤ r1 − �− 1.
Proof. The claim can be proved similarly to Claims 6 and 9.1.
Now we prove the following claim.
Claim 14. If G[u−k′ , u�′ ] is (u−k′ , u0, u�′)-composed with canonical ordering

u−k′ , u−k′+1, . . . , u�′ , where k′ ≤ r2 − 2 and �′ ≤ r1 − �− 1, and any two nonadjacent
vertices in [u−k′−1, u�′+1] have degree sum less than n, then one of the following is
true:

(1) G[u−k′−1, u�′] is (u−k′−1, u0, u�′)-composed with canonical ordering u−k′−1, u−k′ ,
. . . , u�′ ,

(2) G[u−k′ , u�′+1] is (u−k′ , u0, u�′+1)-composed with canonical ordering u−k′ , u−k′+1,
. . . , u�′+1,

(3) G[u−k′−1, u�′+1] is (u−k′−1, u0, u�′+1)-composed with canonical ordering u−k′−1,
u−k′ , . . . , u�′+1.

Proof. Assume the opposite, which implies that for every vertex us ∈ [u−k′+1, u�′ ],
u−k′−1us /∈ E(G), and for every vertex us ∈ [u−k′ , u�′−1], we have u�′+1us /∈ E(G)
and u−k′−1u�′+1 /∈ E(G).

Claim 14.1. Let v ∈ {v0, v1} and us ∈ [u−k′−1, u�′+1]\{u0}. Then vus /∈ Ẽ(G).
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Proof. In a way similar to Claim 7.1, we have v0us /∈ Ẽ(G).

Now we assume that v1us ∈ Ẽ(G). Note that if v0v2 /∈ E(G), then d(v0)+d(v2) ≥
n. We have v0v2 ∈ Ẽ(G).

If s ∈ [−k′ − 1,−2], then s + 1 ∈ [−k′,−1]. By the definition of a composed
graph, there exists t ∈ [1, �′] such that G[us+1, ut] is (us+1, u0, ut)-composed. By
Lemma 2.1, there exists a (u0, ut)-path P such that V (P ) = [us+1, ut]. Then C′ =
P
−→
C [ut, v1]v1us

←−
C [us, v0]R is an o-cycle which contains all the vertices in V (C)∪V (R),

a contradiction.

If s = −1, then by Claim 3, we have v1u−1 /∈ Ẽ(G).

If s = 1, then C′ =←−C [u0, v−1]v−1v1u1
−→
C [u1, v2]v2v0R is an o-cycle which contains

all the vertices in V (C) ∪ V (R), a contradiction.

If s ∈ [2, �′ + 1], then s− 1 ∈ [1, �′]. By the definition of a composed graph, there
exists t ∈ [−k′,−1] such that G[ut, us−1] is (ut, u0, us−1)-composed. By Lemma 2.1,

there exists a (u0, ut)-path P such that V (P ) = [ut, us−1]. Then C′ = P
←−
C [ut, v−1]v−1

v1us
−→
C [us, v2]v2v0R is an o-cycle which contains all the vertices in V (C) ∪ V (R), a

contradiction.

Let G′ = G[[u−k′−1, u�′ ] ∪ {v0, v1}] and G′′ = G[[u−k′−1, u�′+1] ∪ {v0, v1}]. Then,
in a way similar to Claim 7.2, we have the next claim.

Claim 14.2. G′′, and then G′, is {K1,3, N1,1,2}-free.
In a way similar to Claim 7, we can complete the proof of Claim 14.

Now we choose k′, �′ such that

(1) G[v−k′ , v�′ ] is (v−k′ , v0, v�′)-composed with canonical ordering v−k′ , v−k′+1, . . . ,
v�′ ;

(2) any two nonadjacent vertices in [v−k′ , v�′ ] have degree sum less than n; and

(3) k′ + �′ is as big as possible.

In a way similar to Claim 8, we have the following result.

Claim 15. (u−k′−1, u�′), (u−k′ , u�′+1), or (u−k′−1, u�′+1) is u0-good on C.

By Claim 13, we have k′ ≤ r2 − 2 and �′ ≤ r1 − �− 2.

From Claims 12 and 15, we can get that there exists a cycle which contains all
vertices in V (C) ∪ V (R) by Lemma 2.3, a contradiction.

The proof is complete.

4. Proof of Theorem 1.9. Let C be a longest cycle of G. Set n = |V (G)| and
c = |V (C)|, and assume that G is not Hamiltonian; i.e., c < n. Then V (G)\V (C) �= ∅.
Since G is 2-connected, there exists a (u0, v0)-path with length at least 2 which is
internally disjoint from C, where u0, v0 ∈ V (C). Let R = z0z1z2 · · · zr+1, where
z0 = u0 and zr+1 = v0, be such a path, and choose R as short as possible. Let r1
and r2 denote the number of interior vertices in the two subpaths of C from u0 to
v0 (note that clearly r1 + r2 + 2 = c). We specify an orientation of C and label the

vertices of C using two distinct notations, ui and vi, −r2 ≤ i ≤ r1, such that
−→
C =

u0u1u2 · · ·ur1v0u−r2u−r2+1 · · ·u−1u0 and
←−
C = v0v1v2 · · · vr1u0v−r2v−r2+1 · · · v−1v0,

where u� = vr1+1−� and u−k = v−r2−1+k. Let H be the component of G − C which
contains the vertices in [z1, zr].

As in section 3, we have the following claims.

Claim 1. Let x ∈ V (H) and y ∈ {u1, u−1, v1, v−1}. Then xy /∈ Ẽ(G).

Claim 2. u1u−1 ∈ Ẽ(G), v1v−1 ∈ Ẽ(G).

Claim 3. u1v−1 /∈ Ẽ(G), u−1v1 /∈ Ẽ(G), u0v±1 /∈ Ẽ(G), u±1v0 /∈ Ẽ(G).

Claim 4. Either u1u−1 or v1v−1 is in E(G).
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By Claim 4, without loss of generality, we assume that u1u−1 ∈ E(G). Then we
have that G[u−1, u1] is (u−1, u0, u1)-composed.

Claim 5. If G[u−k, u�] is (u−k, u0, u�)-composed, then k ≤ r2−2 and � ≤ r1−2.

The proof of Claim 5 is in a way similar to that of Claim 6 in section 3.

Now we prove the following claim.

Claim 6. If G[u−k, u�] is (u−k, u0, u�)-composed with canonical ordering u−k,
u−k+1, . . . , u�, where k ≤ r2 − 2 and l ≤ r1 − 2, and any two nonadjacent vertices in
[u−k−1, u�+1] have degree sum less than n, then one of the following is true:

(1) G[u−k−1, u�] is (u−k−1, u0, u�)-composed with canonical ordering u−k−1, u−k, . . . ,
u�,

(2) G[u−k, u�+1] is (u−k, u0, u�+1)-composed with canonical ordering u−k, u−k+1, . . . ,
u�+1,

(3) G[u−k−1, u�+1] is (u−k−1, u0, u�+1)-composed with canonical ordering u−k−1, u−k,
. . . , u�+1.

Proof. Assume the opposite, which implies that for every vertex us ∈ [u−k+1, u�],
u−k−1us /∈ E(G), and for every vertex us ∈ [u−k, u�−1], u�+1us /∈ E(G) and u−k−1u�+1

/∈ E(G).

Claim 6.1. For every vertex z ∈ {z1, z2} and us ∈ [u−k−1, u�+1]\{u0} we have

zus /∈ Ẽ(G) and if z2u0 /∈ E(G), then also z2u0 /∈ Ẽ(G).

This claim can be proved similarly to Claims 5 and 7.1 in section 3.

Let G′ = G[[u−k−1, u�]∪ {z1, z2}] and G′′ = G[[u−k−1, u�+1] ∪ {z1, z2}]. In a way
similar to Claims 7.2 and 7.3 in section 3, we have the next claims.

Claim 6.2. G′′, and then G′, is {K1,3, N1,1,2, H1,1}-free.
Claim 6.3. NG′(u0)\{z1, z2} is a clique.

Now, we define Ni = {x ∈ V (G′) : dG′(x, u−k−1) = i}. Then we have N0 =
{u−k−1}, N1 = {u−k}, and N2 = NG′(u−k)\{u−k−1}.

By the definition of a composed graph, we have that |N2| ≥ 2. If there are two ver-
tices x, x′ ∈ N2 such that xx′ /∈ E(G′), then the graph induced by {u−k, u−k−1, x, x

′}
is a claw. Thus N2 is a clique.

We assume u0 ∈ Nj, where j ≥ 2. Then z1 ∈ Nj+1 and z2 ∈ Nj+1 if z2u0 ∈ E(G),
and z2 ∈ Nj+2 if z2u0 /∈ E(G).

If |Ni| = 1 for some i ∈ [2, j − 1], say, Ni = {x}, then x is a cut vertex of the
graph G[u−k, u�]. By the definition of a composed graph, G[u−k, u�] is 2-connected.
This implies |Ni| ≥ 2 for every i ∈ [2, j − 1].

Claim 6.4. For i ∈ [1, j], Ni is a clique.

Proof. If i < j, or i = j and z2u0 /∈ E(G), then we can prove the assertion
similarly to Claim 7.4 in section 3. Thus we assume that i = j and z2u0 ∈ E(G).

If j = 2, the assertion is true by the analysis above. So we assume that j ≥ 3,
and we have that Nj−3, Nj−2, Nj−1, Nj+1 is nonempty and |Nj−1| ≥ 2.

First we prove that for every x ∈ Nj\{u0}, u0x ∈ E(G). We assume that u0x /∈
E(G).

By Claim 6.1 we have xz1 /∈ E(G). If u0 and x have a common neighbor in Nj−1,
denoted w, then let v be a neighbor of w in Nj−2; but then the graph induced by
{w, v, u0, x} is a claw, a contradiction. Thus we have that u0 and x have no common
neighbors in Nj−1.

Let w be a neighbor of u0 in Nj−1, and w′ be a neighbor of x in Nj−1. Then
u0w

′, xw /∈ E(G). Let v be a neighbor of w in Nj−2, and u be a neighbor of v in Nj−3.
If w′v /∈ E(G), then the graph induced by {w, v, w′, u0} is a claw, a contradiction.
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Thus we have w′v ∈ E(G), and then the graph induced by {v, u, w′, x, w, u0, z1} is an
N1,1,2, a contradiction.

Thus we have u0x ∈ E(G) for every x ∈ Nj . Then, by Claim 6.3, we have that
Nj is a clique.

If there exists some vertex y ∈ Nj+1 other than z1 and z2, then we have yu0 /∈
E(G) by Claim 6.3. Let x be a neighbor of y in Nj , w be a neighbor of u0 in
Nj−1, and v be a neighbor of w in Nj−2. Then xu0 ∈ E(G) by Claim 6.4, and
xw ∈ E(G) by Claim 6.3. Thus the graph induced by {w, v, x, y, u0, z1, z2} is an
N1,1,2 if z2u0 /∈ E(G), and is an H1,1 if z2u0 ∈ E(G), a contradiction. So we assume

that all vertices in [u−k, u�] are in
⋃j

i=1 Ni.
If u� ∈ Nj , then let w be a neighbor of u0 in Nj−1, and v be a neighbor of w in

Nj−2. Then the graph induced by {w, v, u0, z1, u�, u�+1} is an N1,1,2 if z2u0 /∈ E(G),
and is an H1,1 if z2u0 ∈ E(G), a contradiction. Thus we have that u� /∈ Nj and then
j ≥ 3.

Let u� ∈ Ni, where i ∈ [2, j − 1]. If u� has a neighbor in Ni+1, then let y be a
neighbor of u� in Ni+1, and w be a neighbor of u� in Ni−1. Then the graph induced
by {u�, w, y, u�+1} is a claw, a contradiction. Thus we have that u� has no neighbors
in Ni+1.

Let x ∈ Ni be a vertex other than u� which has a neighbor y in Ni+1 such that
it has a neighbor z in Ni+2. Let w be a neighbor of x in Ni−1, and v be a neighbor
of w in Ni−2. If u�w /∈ E(G), then the graph induced by {x,w, u�, y} is a claw, a
contradiction. Thus we have that that u�w ∈ E(G). Then the graph induced by
{w, v, u�, u�+1, x, y, z} is an N1,1,2, a contradiction.

Thus the claim holds.
Now we choose k, � such that

(1) G[u−k, u�] is (u−k, u0, u�)-composed with canonical ordering u−k, u−k+1, . . . , u�;
(2) any two nonadjacent vertices in [u−k, u�] have degree sum less than n; and
(3) k + � is as big as possible.

In a way similar to Claims 8 and 9 in section 3, we have the next two results.
Claim 7. (u−k−1, u�), (u−k, u�+1), or (u−k−1, u�+1) is u0-good on C.

Claim 8. There exist v−k′ ∈ V (
−→
C [v−1, u−k−1]) and v�′ ∈ V (

←−
C [v1, u�+1]) such

that (v−k′ , v�′) is v0-good on C.
From Claims 7 and 8, we can get that there exists a cycle which contains all the

vertices in V (C) ∪ V (R) by Lemma 2.3, a contradiction.
The proof is complete.
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