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PAIRS OF HEAVY SUBGRAPHS FOR HAMILTONICITY OF
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Abstract. Let G be a graph on n vertices. An induced subgraph H of G is called heavy if there
exist two nonadjacent vertices in H with degree sum at least n in G. We say that G is H-heavy if
every induced subgraph of G isomorphic to H is heavy. For a family H of graphs, G is called H-heavy
if G is H-heavy for every H ∈ H. In this paper we characterize all connected graphs R and S other
than P3 (the path on three vertices) such that every 2-connected {R, S}-heavy graph is Hamiltonian.
This extends several previous results on forbidden subgraph conditions for Hamiltonian graphs.

Key words. forbidden subgraph, heavy subgraph, Hamilton cycle

AMS subject classifications. 05C07, 05C38, 05C45

DOI. 10.1137/11084786X

1. Introduction. We use Bondy and Murty [2] for terminology and notation
not defined here and consider finite simple graphs only.

Let G be a graph. For a vertex v ∈ V (G) and a subgraph H of G, we use NH(v)
to denote the set, and dH(v) the number, of neighbors of v in H . We call dH(v) the
degree of v in H . For x, y ∈ V (G), an (x, y)-path is a path P connecting x and y; the
vertex x will be called the origin and y the terminus of P . If x, y ∈ V (H), the distance
between x and y in H , denoted dH(x, y), is the length of a shortest (x, y)-path in H .
When no confusion occurs, we will denote NG(v), dG(v), and dG(x, y) by N(v), d(v),
and d(x, y), respectively.

Let G be a graph on n vertices. If a subgraphG′ of G contains all edges xy ∈ E(G)
with x, y ∈ V (G′), then G′ is called an induced subgraph of G. For a given graph H ,
we say that G is H-free if G does not contain an induced subgraph isomorphic to H .
For a family H of graphs, G is called H-free if G is H-free for every H ∈ H. If H
is an induced subgraph of G, we say that H is heavy if there are two nonadjacent
vertices in V (H) with degree sum at least n in G. The graph G is called H-heavy if
every induced subgraph of G isomorphic to H is heavy. For a family H of graphs, G
is called H-heavy if G is H-heavy for every H ∈ H. Note that an H-free graph is also
H-heavy, and if H1 is an induced subgraph of H2, then an H1-free (H1-heavy) graph
is also H2-free (H2-heavy).

The graph K1,3 is called the claw, its (only) vertex of degree 3 is called its center,
and the other vertices are the end vertices. In this paper, instead of K1,3-free (K1,3-
heavy), we use the terminology claw-free (claw-heavy).
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Fig. 1.1. Graphs Pi, C3, Zi, B,N , and W .

The following characterization of pairs of forbidden subgraphs for the existence
of Hamilton cycles in graphs is well known.

Theorem 1.1 (see Bedrossian [1]). Let R and S be connected graphs with R,S �=
P3, and let G be a 2-connected graph. Then G being {R,S}-free implies that G is
Hamiltonian if and only if (up to symmetry) R = K1,3 and S = P4, P5, P6, C3, Z1, Z2,
B,N , or W (see Figure 1.1).

Our aim in this paper is to consider the corresponding heavy subgraph conditions
for a graph to be Hamiltonian. First, we notice that every 2-connected P3-heavy graph
contains a Hamilton cycle. This can be easily deduced from the following result.

Theorem 1.2 (see Fan [5]). Let G be a 2-connected graph. If max{d(u), d(v)} ≥
n/2 for every pair of vertices at distance 2 in G, then G is Hamiltonian.

It is not difficult to see that P3 is the only connected graph S such that every
2-connected S-heavy graph is Hamiltonian. So we have the following problem.

Problem 1.1. Which two connected graphs R and S other than P3 imply that
every 2-connected {R,S}-heavy graph is Hamiltonian?

By Theorem 1.1, we get that (up to symmetry) R = K1,3, and S must be one of
the graphs P4, P5, P6, C3, Z1, Z2, B,N , or W .

In this paper we prove the following results.
Theorem 1.3. If G is a 2-connected {K1,3,W}-heavy graph, then G is

Hamiltonian.
Theorem 1.4. If G is a 2-connected {K1,3, N}-heavy graph, then G is

Hamiltonian.
At the same time, we find a 2-connected {K1,3, P6}-heavy graph which is not

Hamiltonian (see Figure 1.2).
We can also construct a 2-connected, claw-free, and P6-heavy graph which is not

Hamiltonian. This can be shown as follows: Let G be the graph in Figure 1.2, where
r ≥ 15 is an integer divisible by 3. Let V1, V2, V3 be a balanced partition of Kr, and
G′ be the graph obtained from G by deleting all the edges in

⋃3
i=1{xiv : v ∈ Vi}.

Then G′ is a 2-connected, claw-free, and P6-heavy graph which is not Hamiltonian.
Note that W contains induced copies of P4, P5, C3, Z1, Z2, and B. So we have the

following result.
Theorem 1.5. Let R and S be connected graphs with R,S �= P3, and let G be a

2-connected graph. Then G being {R,S}-heavy implies that G is Hamiltonian if and
only if (up to symmetry) R = K1,3 and S = P4, P5, C3, Z1, Z2, B,N , or W .
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Fig. 1.2. A 2-connected {K1,3, P6}-heavy non-Hamiltonian graph (r ≥ 5).

Fig. 1.3. Graphs D and H.

Thus, Theorem 1.5 gives a complete answer to Problem 1.1.
For claw-heavy graphs, Chen, Zhang, and Qiao get the following result.
Theorem 1.6 (see Chen, Zhang, and Qiao [4]). Let G be a 2-connected graph. If

G is claw-heavy and, moreover, {P7, D}-free or {P7, H}-free, then G is Hamiltonian
(see Figure 1.3).

It is clear that every P6-free graph is also {P7, D}-free. Thus we have that every
2-connected claw-heavy and P6-free graph is Hamiltonian. Together with Theorems
1.3 and 1.4, we have the following characterization.

Theorem 1.7. Let S be a connected graph with S �= P3, and let G be a 2-
connected claw-heavy graph. Then G being S-free implies that G is Hamiltonian if
and only if S = P4, P5, P6, C3, Z1, Z2, B,N , or W .

The necessity of this theorem follows from Theorem 1.1 immediately.
It is known that the only 2-connected {K1,3, Z3}-free non-Hamiltonian graphs

have nine vertices (see [6]); hence for n ≥ 10 every 2-connected {K1,3, Z3}-free graph
of order n is also Hamiltonian. But this is not true for {K1,3, Z3}-heavy graphs. A
counterexample is shown in Figure 1.4.

Instead of Theorems 1.3 and 1.4, we prove the following two stronger results.
Theorem 1.8. If G is a 2-connected {K1,3, N1,1,2, D}-heavy graph, then G is

Hamiltonian (see Figure 1.5).
Theorem 1.9. If G is a 2-connected {K1,3, N1,1,2, H1,1}-heavy graph, then G is

Hamiltonian (see Figure 1.5).
Since a W -heavy graph is also {N1,1,2, D}-heavy, Theorem 1.3 can be deduced

from Theorem 1.8. Similarly, since an N -heavy graph is also {N1,1,2, H1,1}-heavy,
Theorem 1.4 can be deduced from Theorem 1.9.

Note that Brousek [3] gave a complete characterization of triples of connected
graphs K1,3, X, Y such that a graph G being 2-connected and {K1,3, X, Y }-free
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Fig. 1.4. A 2-connected {K1,3, Z3}-heavy non-Hamiltonian graph (k ≥ 7, r ≥ k + 4).

Fig. 1.5. Graphs N1,1,2 and H1,1.

implies that G is Hamiltonian. Clearly, if K1,3, S, T is a triple such that every 2-
connected {K1,3, S, T }-heavy graph is Hamiltonian, then, for some triple K1,3, X, Y
of [3], S and T are induced subgraphs of X and Y , respectively. (Of course, the triples
of Theorems 1.8 and 1.9 have this property.) We refer an interested reader to [3] for
more details.

2. Some preliminaries. We first give some additional terminology and notation.
Let G be a graph and X be a subset of V (G). The subgraph of G induced by the

set X is denoted G[X ]. We use G−X to denote the subgraph induced by V (G) \X .
Throughout this paper, k and � will always denote positive integers, and we use s

and t to denote integers which may be nonpositive. For s ≤ t, we use [xs, xt] to denote
the set {xs, xs+1, . . . , xt}. If [xs, xt] is a subset of the vertex set of a graph G, we use
G[xs, xt], instead of G[[xs, xt]], to denote the subgraph induced by [xs, xt] in G.

For a path P and x, y ∈ V (P ), P [x, y] denotes the subpath of P from x to y.

Similarly, for a cycle C with a given orientation and x, y ∈ V (C),
−→
C [x, y] or

←−
C [y, x]

denotes the (x, y)-path on C traversed in the same or opposite direction with respect
to the given orientation of C.

Let G be a graph and x1, x2, y1, y2 ∈ V (G) with x1 �= x2 and y1 �= y2. We define
an ({x1, x2}, {y1, y2})-disjoint path pair, or briefly an (x1x2, y1y2)-pair, as a union of
two vertex-disjoint paths P and Q such that
(1) the origins of P and Q are in {x1, x2}, and
(2) the termini of P and Q are in {y1, y2}.

If G is a graph on n ≥ 2 vertices, x ∈ V (G), and a graph G′ is obtained from G
by adding a (new) vertex y and a pair of edges yx, yz, where z is an arbitrary vertex
of G, z �= x, we say that G′ is a 1-extension of G at x to y. Similarly, if x1, x2 ∈ V (G),
x1 �= x2, then the graph G′ obtained from G by adding two (new) vertices y1, y2 and
the edges y1x1, y2x2, and y1y2 is called the 2-extension of G at (x1, x2) to (y1, y2).



1092 B. LI, Z. RYJÁČEK, Y. WANG AND S. ZHANG

Let G be a graph, and let u, v, w ∈ V (G) be distinct vertices of G. We say that
G is (u, v, w)-composed (or briefly composed) if G has a spanning subgraph D (called
the carrier of G) such that there is an ordering v−k, . . . , v0, . . . , v� (k, � ≥ 1) of V (D)
(=V (G)) and a sequence of graphs D1, . . . , Dr (r ≥ 1) such that

(1) u = v−k, v = v0, w = v�,

(2) D1 is a triangle with V (D1) = {v−1, v0, v1},
(3) V (Di) = [v−ki , v�i ] for some ki, �i, 1 ≤ ki ≤ k, 1 ≤ �i ≤ �, and Di+1, 1 ≤ i ≤

r − 1, satisfies one of the following:

(a) Di+1 is a 1-extension of Di at v−ki to v−ki−1 or at v�i to v�i+1,

(b) Di+1 is a 2-extension of Di at (v−ki , v�i) to (v−ki−1, v�i+1),

(4) Dr = D.
The ordering v−k, . . . , v0, . . . , v� will be called a canonical ordering and the se-

quence D1, . . . , Dr a canonical sequence of D (and also of G). Note that a composed
graph G can have several carriers, canonical orderings, and canonical sequences.
Clearly, a composed graph G and its carrier D are 2-connected; for any canonical
ordering, P = v−k · · · v0 · · · v� is a Hamilton path in D (called a canonical path);
and if D1, . . . , Dr is a canonical sequence, then any Di is (v−ki , v0, v�i)-composed,
i = 1, . . . , r. Note that a (u, v, w)-composed graph is also (w, v, u)-composed.

Now we give a lemma on composed graphs which will be needed in our proofs.
Lemma 2.1. Let G be a composed graph, and let D and v−k, . . . , v0, . . . , v� be a

carrier and a canonical ordering of G. Then

(1) D has a Hamilton (v0, v−k)-path,

(2) for every vs ∈ V (G) \ {v−k}, D has a spanning (v0v�, vsv−k)-pair.
Proof. Let D1, . . . , Dr be a canonical sequence and Q the canonical path of D

corresponding to the given ordering and, for every s ∈ [−k, �] \ {0}, let ŝ, 1 ≤ ŝ ≤ r,
be the smallest integer for which vs ∈ V (Dŝ). Clearly, dDŝ

(vs) = 2.
Now we prove (1) by induction on |V (D)|. If |V (D)| = 3, the assertion is trivially

true. Suppose now that |V (D)| ≥ 4 and that the assertion is true for every graph
with at most |V (D)|− 1 vertices. By the definition of a carrier, we have the following
two cases.

Case 1. V (Dr−1) = [v−k+1, v�] and D is a 1-extension of Dr−1 at v−k+1 to v−k.
By the induction hypothesis, Dr−1 has a Hamilton (v0, v−k+1)-path P ′. Then

P = v0P
′v−k+1v−k is a Hamilton (v0, v−k)-path in D.

Case 2. V (Dr−1) = [v−k, v�−1] and D is a 1-extension of Dr−1 at v�−1 to v�, or
V (Dr−1) = [v−k+1, v�−1] and D is a 2-extension of Dr−1 at (v−k+1, v�−1) to (v−k, v�).
In this case, v� has a neighbor vs other than v�−1, where s ∈ [−k, �− 2].

Case 2.1. s ∈ [−k,−2]. In this case s + 1 ∈ [−k + 1,−1]. Consider the graph
D′ = D

ŝ+1
. Let V (D′) = [vs+1, vt], where t > 0. By the induction hypothesis, there

exists a Hamilton (v0, vt)-path P ′ of D′. Then the path P = P ′Q[vt, v�]v�vsQ[vs, v−k]
is a Hamilton (v0, v−k)-path of D.

Case 2.2. s = −1. In this case, the path P = Q[v0, v�]v�v−1Q[v−1, v−k] is a
Hamilton (v0, v−k)-path of D.

Case 2.3. s ∈ [0, l − 2]. In this case s + 1 ∈ [1, � − 1]. Consider the graph
D′ = D

ŝ+1
. Let V (D′) = [vt, vs+1], where t < 0 and dD′(vs+1) = 2. By the induction

hypothesis, there exists a Hamilton (v0, vt)-path P ′ of D′, and the edge vsvs+1 is in
E(P ′) by the fact dD′(vs+1) = 2. Thus the path P = P ′ − vsvs+1 ∪Q[vs+1, vl]vlvs ∪
Q[vt, v−k] is a Hamilton (v0, v−k)-path of G.

So the proof of (1) is complete. Now we prove (2). We distinguish the following
three cases.
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Case 1. s ∈ [−k + 1, 0]. In this case, s − 1 ∈ [−k,−1]. Consider the graph
D′ = D

ŝ−1
. Let V (D′) = [vs−1, vt], where t > 0 and dD′(vs−1) = 2. By (1), there

exists a Hamilton (v0, vt)-path P ′ of D′ and vs−1vs ∈ E(P ′). Thus R′ = P ′ − vs−1vs
is a spanning (v0vt, vsvs−1)-pair of D′, and R = R′ ∪ Q[vt, vl] ∪ Q[vs−1, v−k] is a
spanning (v0v�, vsv−k)-pair of D.

Case 2. s = 1. In this case, R = Q[v0, v−k]∪Q[v1, v�] is a spanning (v0v�, v1v−k)-
pair of D.

Case 3. s ∈ [2, �]. In this case, s− 1 ∈ [1, l− 1]. Consider the graph D′ = D
ŝ−1

.

Let V (D′) = [vt, vs−1], where t < 0. By (1), there exists a Hamilton (v0, vt)-path P ′

of G′. Thus P1 = P ′Q[vt, v−k] and P2 = Q[vs, v�] form a spanning (v0v�, vsv−k)-pair
of D.

The proof is complete.
Let G be a graph on n vertices and k ≥ 3 an integer. A sequence of vertices

C = v1v2 · · · vkv1 such that for all i ∈ [1, k] either vivi+1 ∈ E(G) or d(vi)+d(vi+1) ≥ n
(indices are taken modulo k) is called an Ore-cycle or briefly, o-cycle of G. The deficit
of an o-cycle C is the integer def(C) = |{i ∈ [1, k] : vivi+1 /∈ E(G)}|. Thus, a cycle is
an o-cycle of deficit 0. We define an o-path of G similarly.

Now, we prove the following lemma on o-cycles.
Lemma 2.2. Let G be a graph, and let C′ be an o-cycle in G. Then there is a

cycle C in G such that V (C′) ⊂ V (C).
Proof. Let C1 be an o-cycle in G such that V (C′) ⊂ V (C1) and def(C1) is smallest

possible, and suppose, to the contrary, that def(C1) ≥ 1. Without loss of generality
suppose that C1 = v1v2 . . . vkv1, where v1vk /∈ E(G) and d(v1) + d(vk) ≥ n. We use
P to denote the o-path P = v1v2 · · · vk.

If v1 and vk have a common neighbor x ∈ V (G) \ V (P ), then C2 = v1Pvkxv1
is an o-cycle in G with V (C′) ⊂ V (C2) and def(C2) < def(C1), a contradiction.
Hence NG−P (v1) ∩ NG−P (vk) = ∅. Then we have dP (v1) + dP (vk) ≥ |V (P )| since
d(v1) + d(vk) ≥ n. Thus, there exists i ∈ [2, k − 1] such that vi ∈ NP (v1) and
vi−1 ∈ NP (vk), and then again C2 = v1P [v1, vi−1]vi−1vkP [vk, vi]viv1 is an o-cycle
with V (C′) ⊂ V (C2) and def(C2) < def(C1), a contradiction.

Note that Lemma 2.2 immediately implies that if P is an (x, y)-path or an o-path
in G with |V (P )| larger than the length of a longest cycle in G, then xy /∈ E(G) and
d(x) + d(y) < n.

In the following, we denote Ẽ(G) = {uv : uv ∈ E(G) or d(u) + d(v) ≥ n}.
Let C be a cycle in G; x, x1, x2 ∈ V (C) be three distinct vertices; and set X =

V (Q), where Q is the (x1, x2)-path on C containing x. We say that the pair of vertices
(x1, x2) is x-good on C if for some j ∈ {1, 2} there is a vertex x′ ∈ X \ {xj} such
that

(1) there is an (x, x3−j)-path P such that V (P ) = X \ {xj},
(2) there is an (xx3−j , x

′xj)-pair D such that V (D) = X ,

(3) d(xj) + d(x′) ≥ n.

Lemma 2.3. Let G be a graph and C be a cycle of G with a given orientation.
Let x, y ∈ V (C), and let R be an (x, y)-path in G which is internally disjoint from C.
If there are vertices x1, x2, y1, y2 ∈ V (C) \ {x, y} such that

(1) x2, x, x1, y1, y, y2 appear in this order along
−→
C (possibly x1 = y1 or x2 = y2),

(2) (x1, x2) is x-good on C,

(3) (y1, y2) is y-good on C,

then there is a cycle C′ in G such that V (C) ∪ V (R) ⊂ V (C′).
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Proof. Assume the opposite. Let P1 and D1 be the path and disjoint path pair
associated with x, and P2 and D2 those associated with y; and let Q1 =

−→
C [x1, y1]

and Q2 =
←−
C [x2, y2].

By the definition of an x-good pair, without loss of generality, we can assume
that P1 is an (x, x1)-path, D1 is an (xx1, x

′x2)-pair, and d(x2) + d(x′) ≥ n.
Case 1. P2 is a (y, y1)-path, D2 is a (yy1, y

′y2)-pair, and d(y2) + d(y′) ≥ n.
In this case the path P = Q2∪D2∪R∪P1∪Q1 is an (x2, y

′)-path which contains
all the vertices in V (C) ∪ V (R), and P ′ = Q2 ∪D1 ∪R ∪ P2 ∪ Q1 is an (x′, y2)-path
which contains all the vertices in V (C)∪V (R). Thus, by Lemma 2.2, d(x2)+d(y′) < n
and d(x′) + d(y2) < n, a contradiction to d(x2) + d(x′) ≥ n and d(y2) + d(y′) ≥ n.

Case 2. P2 is a (y, y2)-path, D2 is a (yy2, y
′y1)-pair, and d(y1) + d(y′) ≥ n.

Case 2.1. The (xx1, x
′x2)-pair D1 is formed by an (x, x2)-path and an (x1, x

′)-
path.

In this case, the path P = Q2∪P2∪R∪P1∪Q1 is an (x2, y1)-path which contains
all the vertices in V (C)∪V (R), and the path P ′ = D1∪Q1∪Q2∪R∪D2 is an (x′, y′)-
path which contains all the vertices in V (C)∪V (R). By Lemma 2.2, d(x2)+d(y1) < n
and d(x′) + d(y′) < n, a contradiction.

Case 2.2. The (xx1, x
′x2)-pair D1 is formed by an (x, x′)-path and an (x1, x2)-

path.
Case 2.2.1. The (yy2, y

′y1)-pair D2 is formed by an (y, y1)-path and an (y2, y
′)-

path.
This case can be proved similarly as in Case 2.1.
Case 2.2.2. The (yy2, y

′y1)-pair D2 is formed by an (y, y′)-path and an (y1, y2)-
path.

In this case, the path P = Q2 ∪D2 ∪ R ∪ P1 ∪ Q1 is an (x2, y
′)-path containing

all vertices in V (C) ∪ V (R), and the path P ′ = Q2 ∪D1 ∪R ∪ P2 ∪Q1 is an (x′, y1)-
path containing all vertices in V (C) ∪ V (R). By Lemma 2.2, d(x2) + d(y′) < n and
d(x′) + d(y1) < n, a contradiction.

The proof is complete.

3. Proof of Theorem 1.8. Let C be a longest cycle of G. Set n = |V (G)| and
c = |V (C)|, and assume that G is not Hamiltonian, i.e., c < n. Then V (G)\V (C) �= ∅.
Since G is 2-connected, there exists a (u0, v0)-path with length at least 2 which is
internally disjoint from C, where u0, v0 ∈ V (C). Let R = z0z1z2 · · · zr+1, where
z0 = u0 and zr+1 = v0, be such a path, and choose R as short as possible. Let r1
and r2 denote the number of interior vertices in the two subpaths of C from u0 to
v0 (note that clearly r1 + r2 + 2 = c). We specify an orientation of C, and label the

vertices of C using two distinct notations ui and vi, −r2 ≤ i ≤ r1, such that
−→
C =

u0u1u2 · · ·ur1v0u−r2u−r2+1 · · ·u−1u0 and
←−
C = v0v1v2 · · · vr1u0v−r2v−r2+1 · · · v−1v0,

where u� = vr1+1−� and u−k = v−r2−1+k (see Figure 3.1). Let H be the component
of G− C which contains the vertices in [z1, zr].

Claim 1. Let x ∈ V (H) and y ∈ {u1, u−1, v1, v−1}. Then xy /∈ Ẽ(G).
Proof. Without loss of generality, we assume y = u1. Let P ′ be an (x, z1)-path

in H . Then P = P ′z1u0
←−
C [u0, u1] is an (x, y)-path which contains all the vertices in

V (C) ∪ V (P ′). By Lemma 2.2, we have xy /∈ Ẽ(G).

Claim 2. u1u−1 ∈ Ẽ(G), v1v−1 ∈ Ẽ(G).
Proof. If u1u−1 /∈ E(G), by Claim 1, the graph induced by {u0, z1, u1, u−1} is

a claw, where d(z1) + d(u±1) < n. Since G is a claw-heavy graph, we have that
d(u1) + d(u−1) ≥ n.

The second assertion can be proved similarly.



PAIRS OF HEAVY SUBGRAPHS FOR HAMILTONICITY 1095

Fig. 3.1. C ∪ R, the subgraph of G.

Claim 3. u1v−1 /∈ Ẽ(G), u−1v1 /∈ Ẽ(G), u0v±1 /∈ Ẽ(G), u±1v0 /∈ Ẽ(G).

Proof. Since P =
−→
C [u1, v0]R

←−
C [u0, v−1] is a (u1, v−1)-path which contains all the

vertices in V (C) ∪ V (R), we have u1v−1 /∈ Ẽ(G) by Lemma 2.2.

If u0v1 ∈ Ẽ(G), then C′ = −→C [u1, v1]v1u0R
−→
C [v0, u−1]u−1u1 is an o-cycle which

contains all the vertices of V (C) ∪ V (R). By Lemma 2.2, there exists a cycle which
contains all the vertices in V (C) ∪ V (R), a contradiction.

The other assertions can be proved similarly.

Claim 4. Either u1u−1 ∈ E(G) or v1v−1 ∈ E(G).

Proof. Assume the opposite. By Claim 2 we have d(u1) + d(u−1) ≥ n and
d(v1)+ d(v−1) ≥ n. By Claim 3, we have d(u1)+ d(v−1) < n and d(u−1)+ d(v1) < n,
a contradiction.

Now, we distinguish two cases.

Case 1. r ≥ 2, or r = 1 and u0v0 /∈ E(G).

By Claim 4, without loss of generality, we assume that u1u−1 ∈ E(G). Thus
G[u−1, u1] is (u−1, u0, u1)-composed.

Claim 5. z2u0 /∈ Ẽ(G).

Proof. By the choice of the path R, we have z2u0 /∈ E(G). Now we prove that
d(z2) + d(u0) < n.

Claim 5.1. Every neighbor of u0 is in V (C) ∪ V (H); every neighbor of z2 is in
V (C) ∪ V (H).

Proof. Assume the opposite. Let z′ ∈ V (H ′) be a neighbor of u0, where H ′ is
a component of G − C other than H . Then we have z′z1 /∈ E(G) and NG−C(z

′) ∩
NG−C(z1) = ∅.

By Claim 1, we have u1z1 /∈ Ẽ(G), and similarly u1z
′ /∈ Ẽ(G). Thus the graph

induced by {u0, u1, z1, z
′} is a claw, where d(u1) + d(z1) < n and d(u1) + d(z′) < n.

Then we have d(z1) + d(z′) ≥ n.

Since NG−C(z1)∩NG−C(z
′) = ∅, there exist two vertices x1, x2 ∈ V (C) such that

x1x2 ∈ E(
−→
C ) and z1x1, z

′x2 ∈ E(G). Thus P = z1x1
←−
C [x1, x2]x2z

′ is a (z1, z
′)-path

which contains all the vertices in V (C)∪ {z1, z′}. By Lemma 2.2, there exists a cycle
which contains all the vertices in V (C) ∪ {z1, z′}, a contradiction.
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If z2 = v0, the second assertion can be proved similarly, and if z2 �= v0, the
assertion is obvious.

Let h = |V (H)| and k = |NH(u0)|. Then we have dH(z2)+dH(u0) ≤ h+k. Since
z1 ∈ NH(u0), we have k ≥ 1. Let NH(u0) = {y1, y2, . . . , yk}, where y1 = z1.

Claim 5.2. yiyj ∈ Ẽ(G) for all 1 ≤ i < j ≤ k.

Proof. If yiyj /∈ E(G), then by Claim 1, the graph induced by {u0, u1, yi, yj} is
a claw, where d(yi) + d(u1) < n and d(yj) + d(u1) < n. Thus we have d(yi) + d(yj)
≥ n.

Now, let Q be the o-path Q = z2y1y2 · · · yku0. It is clear that R[z2, v0] and Q
are internally disjoint, and Q contains at least k vertices in V (H). In the following,

we use C′ to denote the cycle
−→
C [u1, u−1]u−1u1 if z2 �= v0, and to denote the o-cycle−→

C [u1, v1]v1v−1
−→
C [v−1, u−1]u−1u1 if z2 = v0.

By Claims 1 and 3, we have z2vr1 /∈ E(G), where vr1 = u1. Let v� be the last

vertex in
←−
C [v1, u1] such that z2v� ∈ E(G). If there are no neighbors of z2 in

←−
C [v1, u1],

then let v� = v0.

Claim 5.3. For every vertex v�′ ∈ N[v1,vr1 ]
(z2) ∪ {v0}, u0v�′+1 /∈ E(G).

Proof. By Claim 3, we have u0v1 /∈ E(G).

If z2v�′ ∈ E(G) and u0v�′+1 ∈ E(G), then C′′ =
−→
C′[v�′ , v�′+1]v�′+1u0Qz2v�′ is an

o-cycle which contains all the vertices in V (C) ∪ V (Q), a contradiction.

Claim 5.4. r1− � ≥ k+1, and for every vertex v�′ ∈ [v�+1, v�+k], u0v�′ /∈ E(G).
Proof. Assume the opposite. Let v�′ be the first vertex in [v�+1, vr1 ] such that

u0v�′ ∈ E(G), and let �′ − � < k + 1.

If v� = v0, then C′′ =
−→
C [v0, u−1]u−1u1

−→
C [u1, v�′ ]v�′u0QR[z2, v0] is an o-cycle

which contains all the vertices in V (C)\[v1, v�′−1]∪V (Q), and |V (C′′)| > c, a contra-
diction.

Thus, we assume that v� �= v0 and z2v� ∈ E(G). Then C′′ =
−→
C′[v�, v�′ ]v�′u0Qz2v�

is an o-cycle which contains all the vertices in V (C)\[v�+1, v�′−1]∪V (Q), and |V (C′′)| >
c, a contradiction.

Thus we have �′ − � ≥ k + 1. Note that u0vr1 ∈ E(G), and we have r1 − � ≥
k + 1.

Let d1 = |N[v1,vr1 ]
(z2) ∪ {v0}|, d2 = |N[v−r2 ,v−1](z2) ∪ {v0}|, d′1 = |N[v1,vr1 ]

(u0)|
and d′2 = |N[v−r2 ,v−1](u0)|. Then dC(z2) ≤ d1 + d2 − 1 and dC(u0) ≤ d′1 + d′2 + 1.

By Claims 5.3 and 5.4, we have d′1 ≤ r1−d1−k+1, and similarly, d′2 ≤ r2−d2−k+
1. Thus dC(z2)+dC(u0) ≤ r1+r2−2k+2 = c−2k. Note that dH(z2)+dH(u0) ≤ h+k.
By Claim 5.1, we have d(z2) + d(u0) ≤ c+ h− k < n.

Recall that G[u−1, u1] is (u−1, u0, u1)-composed. Now we prove the following
claims.

Claim 6. If G[u−k, u�] is (u−k, u0, u�)-composed with canonical ordering u−k,
u−k+1, . . . , u�, then k ≤ r2 − 2 and � ≤ r1 − 2.

Proof. Let D1, D2, . . . , Dr be a canonical sequence of G[u−k, u�] corresponding
to the canonical ordering u−k, u−k+1, . . . , u�. Suppose that k > r2 − 2. Consider
the graph D′ = D−̂r2+1

, where ̂−r2 + 1 is the smallest integer such that u−r2+1 ∈
V (D−̂r2+1

). Let V (D′) = [u−r2+1, u�′]. By Lemma 2.1, there exists a (u0, u�′)-path

P such that V (P ) = [u−r2+1, u�′]. Then C′ = v−1v0RP
−→
C [u�′ , v1]v1v−1 is an o-cycle

which contains all the vertices in V (C) ∪ V (R), a contradiction.

Claim 7. If G[u−k, u�] is (u−k, u0, u�)-composed with canonical ordering u−k,
u−k+1, . . . , u�, where k ≤ r2 − 2 and l ≤ r1 − 2, and any two nonadjacent vertices in
[u−k−1, u�+1] have degree sum less than n, then one of the following is true:
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(1) G[u−k−1, u�] is (u−k−1, u0, u�)-composed with canonical ordering u−k−1, u−k, . . . ,
u�,

(2) G[u−k, u�+1] is (u−k, u0, u�+1)-composed with canonical ordering u−k, u−k+1, . . . ,
u�+1,

(3) G[u−k−1, u�+1] is (u−k−1, u0, u�+1)-composed with canonical ordering u−k−1, u−k,
. . . , u�+1.

Proof. Assume the opposite, which implies that for every vertex us ∈ [u−k+1, u�],
u−k−1us /∈ E(G), and for every vertex us ∈ [u−k, u�−1], we have u�+1us /∈ E(G) and
u−k−1u�+1 /∈ E(G).

Claim 7.1. Let z ∈ {z1, z2} and us ∈ [u−k−1, u�+1]\{u0}. Then zus /∈ Ẽ(G).

Proof. Without loss of generality, we assume that s > 0. If s = 1, the assertion
is true by Claims 1 and 3. So we assume that s ∈ [2, � + 1] and s − 1 ∈ [1, �]. By
the definition of a composed graph, there exists t ∈ [−k,−1] such that G[ut, us−1]
is (ut, u0, us−1)-composed. By Lemma 2.1, there exists a (u0, ut)-path P ′ such that
V (P ′) = [ut, us−1].

If z �= v0, then P = R[z, u0]P
′←−C [ut, us] is a (z, us)-path which contains all the

vertices in V (C) ∪ {z}. By Lemma 2.2, we have zus /∈ Ẽ(G).

If z = v0 and v0us ∈ Ẽ(G), then C′ = RP ′←−C [ut, v−1]v−1v1
←−
C [v1, us]usv0 is an

o-cycle which contains all the vertices in V (C) ∪ V (R), a contradiction.

Let G′ = G[[u−k−1, u�] ∪ {z1, z2}] and G′′ = G[[u−k−1, u�+1] ∪ {z1, z2}].
Claim 7.2. G′′, and then G′, is {K1,3, N1,1,2}-free.
Proof. By Claims 5 and 7.1, and the condition that any two nonadjacent vertices in

[u−k−1, u�+1] have degree sum less than n, we have that any two nonadjacent vertices
in G′′ have degree sum less than n. Since G (and then G′′) is {K1,3, N1,1,2}-heavy,
we have that G′′ is {K1,3, N1,1,2}-free.

Claim 7.3. NG′(u0)\{z1} is a clique.

Proof. If there are two vertices x, x′ ∈ NG′(u0)\{z1} such that xx′ /∈ E(G′), then
the graph induced by {u0, z1, x, x

′} is a claw, a contradiction.

Now, we define Ni = {x ∈ V (G′) : dG′(x, u−k−1) = i}. Then we have N0 =
{u−k−1}, N1 = {u−k}, and N2 = NG′(u−k)\{u−k−1}.

By the definition of a composed graph, we have |N2| ≥ 2. If there are two vertices
x, x′ ∈ N2 such that xx′ /∈ E(G′), then the graph induced by {u−k, u−k−1, x, x

′} is a
claw, a contradiction. Thus, N2 is a clique.

We assume u0 ∈ Nj , where j ≥ 2. Then z1 ∈ Nj+1 and z2 ∈ Nj+2.

If |Ni| = 1 for some i ∈ [2, j − 1], say, Ni = {x}, then x is a cut vertex of the
graph G[u−k, ul]. By the definition of a composed graph, G[u−k, ul] is 2-connected.
This implies |Ni| ≥ 2 for every i ∈ [2, j − 1].

Claim 7.4. For i ∈ [1, j], Ni is a clique.

Proof. We prove this claim by induction on i. For i = 1, 2, the claim is true by the
analysis above. So we assume that 3 ≤ i ≤ j, and we have thatNi−3, Ni−2, Ni−1, Ni+1,
and Ni+2 is nonempty, and |Ni−1| ≥ 2.

First we choose a vertex x ∈ Ni which has a neighbor y ∈ Ni+1 such that it has
a neighbor z ∈ Ni+2. We prove that for every x′ ∈ Ni, xx

′ ∈ E(G). We assume that
xx′ /∈ E(G).

If x′y ∈ E(G), then the graph induced by {y, x, x′, z} is a claw, a contradiction.
Thus, we have x′y /∈ E(G). If x and x′ have a common neighbor in Ni−1, denote it by
w; then let v be a neighbor of w in Ni−2, and the graph induced by {w, v, x, x′} is a
claw, a contradiction. Thus we have that x and x′ have no common neighbors in Ni−1.
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Let w be a neighbor of x in Ni−1, and w′ be a neighbor of x′ in Ni−1. Then
xw′, x′w /∈ E(G). Let v be a neighbor of w in Ni−2, and u be a neighbor of v in Ni−3.
If w′v /∈ E(G), then the graph induced by {w, v, w′, x} is a claw, a contradiction.
Thus we have w′v ∈ E(G), and then the graph induced by {v, u, w′, x′, w, x, y} is an
N1,1,2, a contradiction.

Thus we have xx′ ∈ E(G) for every x′ ∈ Ni.
Now, let x′ and x′′ be two vertices in Ni other than x such that x′x′′ /∈ E(G).

We have xx′, xx′′ ∈ E(G).
If x′y ∈ E(G), then similarly to the case of x, we have x′x′′ ∈ E(G), a contradic-

tion. Thus we have x′y /∈ E(G). Similarly, x′′y /∈ E(G). Then the graph induced by
{x, x′, x′′, y} is a claw, a contradiction.

Thus, Ni is a clique.
If there exists some vertex y ∈ Nj+1 other than z1, then we have yu0 /∈ E(G) by

Claim 7.3. Let x be a neighbor of y in Nj , w be a neighbor of u0 in Nj−1, and v be
a neighbor of w in Nj−2. Then xu0 ∈ E(G) by Claim 7.4 and xw ∈ E(G) by Claim
7.3. Thus the graph induced by {w, v, x, y, u0, z1, z2} is an N1,1,2, a contradiction. So

we assume that all vertices in [u−k, u�] are in
⋃j

i=1 Ni.
If u� ∈ Nj , then let w be a neighbor of u0 in Nj−1, and v be a neighbor of w in

Nj−2. Then the graph induced by {w, v, u0, z1, u�, u�+1} is an N1,1,2, a contradiction.
Thus we have that u� /∈ Nj and then j ≥ 3.

Let u� ∈ Ni, where i ∈ [2, j − 1]. If u� has a neighbor in Ni+1, then let y be a
neighbor of u� in Ni+1, and w be a neighbor of u� in Ni−1. Then the graph induced by
{u�, w, y, u�+1} is a claw, a contradiction. So we have that u� has no neighbors inNi+1.

Let x ∈ Ni be a vertex other than u� which has a neighbor y in Ni+1 such
that it has a neighbor z in Ni+2. Let w be a neighbor of x in Ni−1, and v be a
neighbor of w in Ni−2. If u�w /∈ E(G), then the graph induced by {x,w, u�, y} is
a claw, a contradiction. So we have that u�w ∈ E(G). Then the graph induced by
{w, v, u�, u�+1, x, y, z} is an N1,1,2, a contradiction.

Thus the claim holds.
Now we choose k, � such that

(1) G[u−k, u�] is (u−k, u0, u�)-composed with canonical ordering u−k, u−k+1, . . . , u�;

(2) any two nonadjacent vertices in [u−k, u�] have degree sum less than n; and

(3) k + � is as big as possible.

By Claim 7, we have that there exists a vertex us ∈ [u−k+1, u�] such that
d(u−k−1) + d(us) ≥ n, or there exists a vertex us ∈ [u−k, u�−1] such that d(us) +
d(u�+1) ≥ n, or d(u−k−1) + d(u�+1) ≥ n. Thus, we have the next result.

Claim 8. (u−k−1, u�) or (u−k, u�+1) or (u−k−1, u�+1) is u0-good on C.
Proof. If there exists a vertex us ∈ [u−k+1, u�] such that d(u−k−1) + d(us) ≥ n,

then, by Lemma 2.1, there exists a (u0, u�)-path P such that V (P ) = [u−k, u�], there
exists a (u0u�, usu−k)-pair D

′ such that V (D′) = [u−k, u�], and D = D′ + u−ku−k−1

is a (u0u�, usu−k−1)-pair such that V (D) = [u−k−1, u�]. Thus (u−k−1, u�) is u0-good
on C.

If there exists a vertex us ∈ [u−k, u�−1] such that d(us) + d(u�+1) ≥ n, we can
prove the result similarly.

If d(u−k−1) + d(u�+1) ≥ n, then by Lemma 2.1, there exists a (u0, u�)-path
P ′ such that V (P ′) = [u−k, u�], and there exists a (u0, u−k)-path P ′′ such that
V (P ′′) = [u−k, u�]. Then P = P ′u1u�+1 is a (u0, u�+1)-path such that V (P ) =
[u−k, u�+1], and D = P ′′u−ku−k−1 ∪ u�+1 is a (u0u�+1, u�+1u−k−1)-pair such that
V (D) = [u−k−1, u�+1]. Thus (u−k−1, u�+1) is u0-good on C.
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Claim 9. There exist v−k′ ∈ V (
−→
C [v−1, u−k−1]) and v�′ ∈ V (

←−
C [v1, u�+1]) such

that (v−k′ , v�′) is is v0-good on C.

Proof. By Claim 6, we have k ≤ r2 − 2 and l ≤ r1 − 2.

If v1v−1 /∈ E(G), then by Claim 2, d(v1) + d(v−1) ≥ n. Then P = v0v1 is a
(v0, v1)-path and D = v0v−1 ∪ v1 is a (v0v1, v−1v1)-pair. Thus we have that (v−1, v1)
is v0-good on C.

Now we assume that v1v−1 ∈ E(G), and then G[v−1, v1] is (v−1, v0, v1)-composed.

Let r′2 = r2 − k and r′1 = r1 − �.

Claim 9.1. If G[v−k′ , v�′ ] is (v−k′ , v0, v�′)-composed with canonical ordering
v−k′ , v−k′+1, . . . , v�′ , then k′ ≤ r′2 − 1 and �′ ≤ r′1 − 1.

Proof. Let D1, D2, . . . , Dr be a canonical sequence of G[v−k′ , v�′ ] corresponding
to the canonical ordering v−k′ , v−k′+1, . . . , v�′ . Suppose that k′ > r′2 − 1. Consider

the graph D′ = D−̂r′
2

, where −̂r′2 is the smallest integer such that v−r′2 ∈ V (D−̂r′
2

).

Let V (D′) = [v−r′2 , v�′′ ]. By Lemma 2.1, there exists a (v0, v�′′)-path P such that

V (P ) = [v−r′
2
, u�′′ ]. Then C′ = P

−→
C [u�, v�′′ ]P

′R is a cycle which contains all the
vertices in V (C) ∪ V (R), a contradiction.

In a way similar to Claim 7, we have the next claim.

Claim 9.2. If G[v−k′ , v�′ ] is (v−k′ , v0, v�′)-composed with canonical ordering
v−k′ , v−k′+1, . . . , v�′ , where k′ ≤ r′2 − 1 and � ≤ r′1 − 1, and any two nonadjacent
vertices in [v−k′−1, v�′+1] have degree sum less than n, then one of the following is
true:

(1) G[v−k′−1, v�′ ] is (v−k′−1, v0, v�′)-composed with canonical ordering v−k′−1, v−k′ ,
. . . , v�′ ,

(2) G[v−k′ , vl′+1] is (v−k′ , v0, v�′+1)-composed with canonical ordering v−k′ , v−k′+1,
. . . , v�′+1,

(3) G[v−k′−1, vl′+1] is (v−k′−1, v0, v�′+1)-composed with canonical ordering v−k′−1,
v−k′ , . . . , v�′+1.

Now we choose k′, �′ such that

(1) G[v−k′ , v�′ ] is (v−k′ , v0, v�′)-composed with canonical ordering v−k′ , v−k′+1, . . . ,
v�′ ;

(2) any two nonadjacent vertices in [v−k′ , v�′ ] have degree sum less than n; and

(3) k′ + �′ is as big as possible.

In a way similar to Claim 8, we have that (v−k′−1, vl′), (v−k′ , vl′+1), or (v−k′−1, vl′+1)
is v0-good on C.

From Claims 8 and 9, we get that there exists a cycle which contains all the
vertices in V (C) ∪ V (R) by Lemma 2.3, a contradiction.

Case 2. r = 1 and u0v0 ∈ E(G). We have u0u−1 ∈ E(G) and u0u−r2 /∈ E(G),

where u−r2 = v−1. Let u−k−1 be the first vertex in
←−
C [u−1, v−1] such that u0u−k−1 /∈

E(G). Then k ≤ r2 − 1.

Similarly, let v�+1 be the first vertex in
←−
C [v1, u1] such that v0v�+1 /∈ E(G). Then

� ≤ r1 − 1.

Claim 10. Let x ∈ [u−k−1, u−1] and y ∈ [v1, v�+1]. Then

(1) xz1, xv0 /∈ Ẽ(G),

(2) yz1, yu0 /∈ Ẽ(G),

(3) xy /∈ Ẽ(G).
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Proof. (1) If x = u−1, then by Claims 1 and 3 we have u−1z1, u−1v0 /∈ Ẽ(G). So
we assume that x = u−k′ , where −k′ ∈ [−k − 1,−2] and u0u−k′+1 ∈ E(G).

If u−k′z1 ∈ Ẽ(G), then C′ = u0u−k′+1
−→
C [u−k′+1, u−1]u−1u1

−→
C [u1, u−k′ ]u−k′z1u0

is an o-cycle which contains all the vertices in V (C) ∪ V (R), a contradiction.

If u−k′v0 ∈ Ẽ(G), then C′ = u0u−k′+1
−→
C [u−k′+1, u−1]u−1u1

−→
C [u1, v1]v1v−1

−→
C [v−1,

u−k′ ] u−k′v0R is an o-cycle which contains all the vertices in V (C) ∪ V (R), a
contradiction.

The assertion (2) can be proved similarly.

(3) If x = u−1 and y = v1, then by Claim 3, we have xy /∈ Ẽ(G).

If u−k′v1 ∈ Ẽ(G), where k′ ∈ [2, k+1], then C′ = u0R
−→
C [v0, u−k′ ]u−k′v1

←−
C [v1, u1]

u1u−1
←−
C [u−1, u−k′+1]u−k′+1u0 is an o-cycle which contains all the vertices in V (C)∪

V (R), a contradiction.

If u−1v�′ ∈ Ẽ(G), where �′ ∈ [2, �+ 1], then we can prove the result similarly.

If u−k′v�′ ∈ Ẽ(G), where k′ ∈ [2, k + 1] and �′ ∈ [2, � + 1], then C′ = u0u−k′+1−→
C [u−k′+1, u−1]u−1u1

−→
C [u1, vl′ ]vl′u−k′

←−
C [u−k′ , v−1]v−1v1

←−
C [v1, vl′−1]vl′−1v0R is an o-

cycle which contains all the vertices in V (C) ∪ V (R), a contradiction.

Claim 11. Either u−k−1u0 /∈ Ẽ(G) or v�+1v0 /∈ Ẽ(G).
Proof. Assume the opposite. Since u−k−1u0, v�+1v0 /∈ E(G), we have d(u−k−1)+

d(u0) ≥ n and d(v�+1) + d(v0) ≥ n. By Claim 10, we have d(u0) + d(v�+1) < n and
d(v0) + d(u−k−1) < n, a contradiction.

Without loss of generality, we assume that u−k−1u0 /∈ Ẽ(G). If v�+1v0 /∈ Ẽ(G),
then the subgraph induced by {z1, v0, v�, v�+1, u0, u−k, u−k−1} is a D which is not
heavy, a contradiction. Since v0v�+1 /∈ E(G), we have d(v0) + d(v�+1) ≥ n.

Claim 12. Either (v−1, v1) or (v−1, v�+1) is v0-good on C.
Proof. If v1v−1 /∈ E(G), then, by Claim 2, d(v1) + d(v−1) ≥ n. Then P = v0v1 is

a (v0, v1)-path and D = v0v−1 ∪ v1 is a (v0v1, v−1v1)-pair. Thus, (v−1, v1) is v0-good
on C.

If v1v−1 ∈ E(G), then P = v0v�
−→
C [v�, v1]v1v−1 is a (v0, v−1)-path and D =

v0 ∪ v−1v1
←−
C [v1, v�+1] is a (v0v−1, v0vl+1)-pair. Since d(v0) + d(v�+1) ≥ n, we have

that (v−1, v�+1) is v0-good on C.
Claim 13. If G[u−k′ , u�′ ] is (u−k′ , u0, u�′)-composed with canonical ordering

u−k′ , u−k′+1, . . . , u�′ , then k′ ≤ r2 − 2 and �′ ≤ r1 − �− 1.
Proof. The claim can be proved similarly to Claims 6 and 9.1.
Now we prove the following claim.
Claim 14. If G[u−k′ , u�′ ] is (u−k′ , u0, u�′)-composed with canonical ordering

u−k′ , u−k′+1, . . . , u�′ , where k′ ≤ r2 − 2 and �′ ≤ r1 − �− 1, and any two nonadjacent
vertices in [u−k′−1, u�′+1] have degree sum less than n, then one of the following is
true:

(1) G[u−k′−1, u�′] is (u−k′−1, u0, u�′)-composed with canonical ordering u−k′−1, u−k′ ,
. . . , u�′ ,

(2) G[u−k′ , u�′+1] is (u−k′ , u0, u�′+1)-composed with canonical ordering u−k′ , u−k′+1,
. . . , u�′+1,

(3) G[u−k′−1, u�′+1] is (u−k′−1, u0, u�′+1)-composed with canonical ordering u−k′−1,
u−k′ , . . . , u�′+1.

Proof. Assume the opposite, which implies that for every vertex us ∈ [u−k′+1, u�′ ],
u−k′−1us /∈ E(G), and for every vertex us ∈ [u−k′ , u�′−1], we have u�′+1us /∈ E(G)
and u−k′−1u�′+1 /∈ E(G).

Claim 14.1. Let v ∈ {v0, v1} and us ∈ [u−k′−1, u�′+1]\{u0}. Then vus /∈ Ẽ(G).
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Proof. In a way similar to Claim 7.1, we have v0us /∈ Ẽ(G).

Now we assume that v1us ∈ Ẽ(G). Note that if v0v2 /∈ E(G), then d(v0)+d(v2) ≥
n. We have v0v2 ∈ Ẽ(G).

If s ∈ [−k′ − 1,−2], then s + 1 ∈ [−k′,−1]. By the definition of a composed
graph, there exists t ∈ [1, �′] such that G[us+1, ut] is (us+1, u0, ut)-composed. By
Lemma 2.1, there exists a (u0, ut)-path P such that V (P ) = [us+1, ut]. Then C′ =
P
−→
C [ut, v1]v1us

←−
C [us, v0]R is an o-cycle which contains all the vertices in V (C)∪V (R),

a contradiction.

If s = −1, then by Claim 3, we have v1u−1 /∈ Ẽ(G).

If s = 1, then C′ =←−C [u0, v−1]v−1v1u1
−→
C [u1, v2]v2v0R is an o-cycle which contains

all the vertices in V (C) ∪ V (R), a contradiction.

If s ∈ [2, �′ + 1], then s− 1 ∈ [1, �′]. By the definition of a composed graph, there
exists t ∈ [−k′,−1] such that G[ut, us−1] is (ut, u0, us−1)-composed. By Lemma 2.1,

there exists a (u0, ut)-path P such that V (P ) = [ut, us−1]. Then C′ = P
←−
C [ut, v−1]v−1

v1us
−→
C [us, v2]v2v0R is an o-cycle which contains all the vertices in V (C) ∪ V (R), a

contradiction.

Let G′ = G[[u−k′−1, u�′ ] ∪ {v0, v1}] and G′′ = G[[u−k′−1, u�′+1] ∪ {v0, v1}]. Then,
in a way similar to Claim 7.2, we have the next claim.

Claim 14.2. G′′, and then G′, is {K1,3, N1,1,2}-free.
In a way similar to Claim 7, we can complete the proof of Claim 14.

Now we choose k′, �′ such that

(1) G[v−k′ , v�′ ] is (v−k′ , v0, v�′)-composed with canonical ordering v−k′ , v−k′+1, . . . ,
v�′ ;

(2) any two nonadjacent vertices in [v−k′ , v�′ ] have degree sum less than n; and

(3) k′ + �′ is as big as possible.

In a way similar to Claim 8, we have the following result.

Claim 15. (u−k′−1, u�′), (u−k′ , u�′+1), or (u−k′−1, u�′+1) is u0-good on C.

By Claim 13, we have k′ ≤ r2 − 2 and �′ ≤ r1 − �− 2.

From Claims 12 and 15, we can get that there exists a cycle which contains all
vertices in V (C) ∪ V (R) by Lemma 2.3, a contradiction.

The proof is complete.

4. Proof of Theorem 1.9. Let C be a longest cycle of G. Set n = |V (G)| and
c = |V (C)|, and assume that G is not Hamiltonian; i.e., c < n. Then V (G)\V (C) �= ∅.
Since G is 2-connected, there exists a (u0, v0)-path with length at least 2 which is
internally disjoint from C, where u0, v0 ∈ V (C). Let R = z0z1z2 · · · zr+1, where
z0 = u0 and zr+1 = v0, be such a path, and choose R as short as possible. Let r1
and r2 denote the number of interior vertices in the two subpaths of C from u0 to
v0 (note that clearly r1 + r2 + 2 = c). We specify an orientation of C and label the

vertices of C using two distinct notations, ui and vi, −r2 ≤ i ≤ r1, such that
−→
C =

u0u1u2 · · ·ur1v0u−r2u−r2+1 · · ·u−1u0 and
←−
C = v0v1v2 · · · vr1u0v−r2v−r2+1 · · · v−1v0,

where u� = vr1+1−� and u−k = v−r2−1+k. Let H be the component of G − C which
contains the vertices in [z1, zr].

As in section 3, we have the following claims.

Claim 1. Let x ∈ V (H) and y ∈ {u1, u−1, v1, v−1}. Then xy /∈ Ẽ(G).

Claim 2. u1u−1 ∈ Ẽ(G), v1v−1 ∈ Ẽ(G).

Claim 3. u1v−1 /∈ Ẽ(G), u−1v1 /∈ Ẽ(G), u0v±1 /∈ Ẽ(G), u±1v0 /∈ Ẽ(G).

Claim 4. Either u1u−1 or v1v−1 is in E(G).
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By Claim 4, without loss of generality, we assume that u1u−1 ∈ E(G). Then we
have that G[u−1, u1] is (u−1, u0, u1)-composed.

Claim 5. If G[u−k, u�] is (u−k, u0, u�)-composed, then k ≤ r2−2 and � ≤ r1−2.

The proof of Claim 5 is in a way similar to that of Claim 6 in section 3.

Now we prove the following claim.

Claim 6. If G[u−k, u�] is (u−k, u0, u�)-composed with canonical ordering u−k,
u−k+1, . . . , u�, where k ≤ r2 − 2 and l ≤ r1 − 2, and any two nonadjacent vertices in
[u−k−1, u�+1] have degree sum less than n, then one of the following is true:

(1) G[u−k−1, u�] is (u−k−1, u0, u�)-composed with canonical ordering u−k−1, u−k, . . . ,
u�,

(2) G[u−k, u�+1] is (u−k, u0, u�+1)-composed with canonical ordering u−k, u−k+1, . . . ,
u�+1,

(3) G[u−k−1, u�+1] is (u−k−1, u0, u�+1)-composed with canonical ordering u−k−1, u−k,
. . . , u�+1.

Proof. Assume the opposite, which implies that for every vertex us ∈ [u−k+1, u�],
u−k−1us /∈ E(G), and for every vertex us ∈ [u−k, u�−1], u�+1us /∈ E(G) and u−k−1u�+1

/∈ E(G).

Claim 6.1. For every vertex z ∈ {z1, z2} and us ∈ [u−k−1, u�+1]\{u0} we have

zus /∈ Ẽ(G) and if z2u0 /∈ E(G), then also z2u0 /∈ Ẽ(G).

This claim can be proved similarly to Claims 5 and 7.1 in section 3.

Let G′ = G[[u−k−1, u�]∪ {z1, z2}] and G′′ = G[[u−k−1, u�+1] ∪ {z1, z2}]. In a way
similar to Claims 7.2 and 7.3 in section 3, we have the next claims.

Claim 6.2. G′′, and then G′, is {K1,3, N1,1,2, H1,1}-free.
Claim 6.3. NG′(u0)\{z1, z2} is a clique.

Now, we define Ni = {x ∈ V (G′) : dG′(x, u−k−1) = i}. Then we have N0 =
{u−k−1}, N1 = {u−k}, and N2 = NG′(u−k)\{u−k−1}.

By the definition of a composed graph, we have that |N2| ≥ 2. If there are two ver-
tices x, x′ ∈ N2 such that xx′ /∈ E(G′), then the graph induced by {u−k, u−k−1, x, x

′}
is a claw. Thus N2 is a clique.

We assume u0 ∈ Nj, where j ≥ 2. Then z1 ∈ Nj+1 and z2 ∈ Nj+1 if z2u0 ∈ E(G),
and z2 ∈ Nj+2 if z2u0 /∈ E(G).

If |Ni| = 1 for some i ∈ [2, j − 1], say, Ni = {x}, then x is a cut vertex of the
graph G[u−k, u�]. By the definition of a composed graph, G[u−k, u�] is 2-connected.
This implies |Ni| ≥ 2 for every i ∈ [2, j − 1].

Claim 6.4. For i ∈ [1, j], Ni is a clique.

Proof. If i < j, or i = j and z2u0 /∈ E(G), then we can prove the assertion
similarly to Claim 7.4 in section 3. Thus we assume that i = j and z2u0 ∈ E(G).

If j = 2, the assertion is true by the analysis above. So we assume that j ≥ 3,
and we have that Nj−3, Nj−2, Nj−1, Nj+1 is nonempty and |Nj−1| ≥ 2.

First we prove that for every x ∈ Nj\{u0}, u0x ∈ E(G). We assume that u0x /∈
E(G).

By Claim 6.1 we have xz1 /∈ E(G). If u0 and x have a common neighbor in Nj−1,
denoted w, then let v be a neighbor of w in Nj−2; but then the graph induced by
{w, v, u0, x} is a claw, a contradiction. Thus we have that u0 and x have no common
neighbors in Nj−1.

Let w be a neighbor of u0 in Nj−1, and w′ be a neighbor of x in Nj−1. Then
u0w

′, xw /∈ E(G). Let v be a neighbor of w in Nj−2, and u be a neighbor of v in Nj−3.
If w′v /∈ E(G), then the graph induced by {w, v, w′, u0} is a claw, a contradiction.
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Thus we have w′v ∈ E(G), and then the graph induced by {v, u, w′, x, w, u0, z1} is an
N1,1,2, a contradiction.

Thus we have u0x ∈ E(G) for every x ∈ Nj . Then, by Claim 6.3, we have that
Nj is a clique.

If there exists some vertex y ∈ Nj+1 other than z1 and z2, then we have yu0 /∈
E(G) by Claim 6.3. Let x be a neighbor of y in Nj , w be a neighbor of u0 in
Nj−1, and v be a neighbor of w in Nj−2. Then xu0 ∈ E(G) by Claim 6.4, and
xw ∈ E(G) by Claim 6.3. Thus the graph induced by {w, v, x, y, u0, z1, z2} is an
N1,1,2 if z2u0 /∈ E(G), and is an H1,1 if z2u0 ∈ E(G), a contradiction. So we assume

that all vertices in [u−k, u�] are in
⋃j

i=1 Ni.
If u� ∈ Nj , then let w be a neighbor of u0 in Nj−1, and v be a neighbor of w in

Nj−2. Then the graph induced by {w, v, u0, z1, u�, u�+1} is an N1,1,2 if z2u0 /∈ E(G),
and is an H1,1 if z2u0 ∈ E(G), a contradiction. Thus we have that u� /∈ Nj and then
j ≥ 3.

Let u� ∈ Ni, where i ∈ [2, j − 1]. If u� has a neighbor in Ni+1, then let y be a
neighbor of u� in Ni+1, and w be a neighbor of u� in Ni−1. Then the graph induced
by {u�, w, y, u�+1} is a claw, a contradiction. Thus we have that u� has no neighbors
in Ni+1.

Let x ∈ Ni be a vertex other than u� which has a neighbor y in Ni+1 such that
it has a neighbor z in Ni+2. Let w be a neighbor of x in Ni−1, and v be a neighbor
of w in Ni−2. If u�w /∈ E(G), then the graph induced by {x,w, u�, y} is a claw, a
contradiction. Thus we have that that u�w ∈ E(G). Then the graph induced by
{w, v, u�, u�+1, x, y, z} is an N1,1,2, a contradiction.

Thus the claim holds.
Now we choose k, � such that

(1) G[u−k, u�] is (u−k, u0, u�)-composed with canonical ordering u−k, u−k+1, . . . , u�;
(2) any two nonadjacent vertices in [u−k, u�] have degree sum less than n; and
(3) k + � is as big as possible.

In a way similar to Claims 8 and 9 in section 3, we have the next two results.
Claim 7. (u−k−1, u�), (u−k, u�+1), or (u−k−1, u�+1) is u0-good on C.

Claim 8. There exist v−k′ ∈ V (
−→
C [v−1, u−k−1]) and v�′ ∈ V (

←−
C [v1, u�+1]) such

that (v−k′ , v�′) is v0-good on C.
From Claims 7 and 8, we can get that there exists a cycle which contains all the

vertices in V (C) ∪ V (R) by Lemma 2.3, a contradiction.
The proof is complete.
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