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Abstract

Let X, Y be connected graphs. A graph G is (X, Y )-free if G contains a copy of neither X

nor Y as an induced subgraph. Pairs of connected graphs X, Y such that every 3-connected
(X, Y )-free graph is Hamilton connected have been investigated most recently in [8] and [5].
This paper improves those results. Specifically, it is shown that every 3-connected (X, Y )-free
graph is Hamilton connected for X = K1,3 and Y = P8, N1,1,3, or N1,2,2 and the proof of this
result uses a new closure technique developed by the third and fourth authors. A discussion
of restrictions on the nature of the graph Y is also included.

1 Introduction

We will begin with some basic definitions, notation, and elementary results. We make every at-

tempt to use standard definitions and notation, and generally follow the notation of [7]. With the

exception of a couple of proof-specific terms we will place all the definitions in the first part of the

introduction so that the reader may easily find them when needed.

Definitions and Notation

The word graph will generally mean a simple graph and we will use multigraph to indicate that

multiple edges and loops are allowed. For u, v ∈ V (G), a (u, v)-walk in G is a finite sequence of
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vertices and edges. A (u, v)-trail in G is a (u, v)-walk with no repeated edges. Given a trail T and

an edge e in the multigraph G, we say e is dominated by T if e is incident to an interior vertex of T .

Given u, v ∈ V (G), we say T is a maximal (u, v)-trail if T dominates a maximum number of edges

among all (u, v)-trails in G. A trail T in G is called a dominating trail if T dominates all edges in

G.

Let V1 and V2 be nonempty subsets of V (G). The distance between V1 and V2 is defined as the

length of the shortest path in G beginning at a vertex in V1 and ending at a vertex in V2. If H1 and

H2 are subgraphs of G, the distance between H1 and H2 is defined at the distance between V (H1)

and V (H2).

Given v ∈ V (G), the neighborhood of v, denoted N(v), is the set of vertices adjacent to v in

G. Given a graph G, the local completion of G at v, denoted G
∗
v, is the graph obtained from G by

adding all edges between the vertices in N(v). Given S ⊆ V (G), we use 〈S〉 to denote the subgraph

of G induced by S. A vertex v in a graph G is simplicial if 〈N(v)〉 is complete. An edge e in G is

called pendant if one of the end vertices of e has degree 1 in G. For (multi)graphs G1 and G2, we

use G1 ' G2 to denote that G1 and G2 are isomorphic.

If H is a given graph, then a graph G is called H-free if G contains no induced subgraph isomor-

phic to H. In this case, the graph H is called a forbidden subgraph. Given graphs H1, H2, · · · , Hk,

we say G is (H1, H2, · · · , Hk)-free if G contains no induced subgraph isomorphic to any of the

graphs Hi, i = 1, 2, · · · , k. In this paper and in the literature related to it, several specific forbidden

subgraphs arise frequently. The claw is the graph K1,3. The center of a claw refers to the vertex

of degree 3 in K1,3. A net, denoted Ni,j,k, consists of a triangle and three disjoint pendant paths

(one on each vertex of the triangle) where i, j, and k denote the lengths of these paths. Others

are Zi = Ni,0,0 and Bi,j = Ni,j,0 and Hi, which denotes two triangles connected by a single path of

length i.

The line graph of a given graph H, denoted by L(H), is constructed with vertex set E(H)

and such that two vertices in L(H) are adjacent if and only if the corresponding edges in H are

incident to a common vertex in H. In [3], it was shown that for every graph H, L(H) is claw-free.

Given a line graph G, we define the preimage of G, denoted L−1(G) to be a graph H such that

L(H) = G. An edge cut Y of a multigraph G is essential if G − Y has at least two nontrivial

components. For an integer k > 0, a multigraph G is essentially k-edge-connected if G every essen-

tial edge cut Y contains at least k edges. From the definitions it is easy to see that G = L(H) is

k-connected if and only if H is essentially k-edge-connected. Also, G = L(H) contains the graph

F as an induced subgraph if and only if H contains L−1(F ) as a (not necessarily induced) subgraph.

Background

Pairs of forbidden subgraphs X, Y implying a 2-connected (X, Y )-free graph to be hamiltonian

were characterized by Bedrossian [1] and the characterization was reconsidered by Faudree and
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Gould [9]. There are similar characterizations for some other properties (see [9]). However, the

corresponding question for Hamilton connectedness remains still open.

On the positive side, the following results were proved by Shepherd [14], Chen and Gould [8]

and by Broersma et al. [5].

Theorem 1. (i) [14] Every 3-connected (K1,3, N1,1,1)-free graph is Hamilton connected.

(ii) [8] Let G be a 3-connected graph satisfying any of the following:

(α) G is (K1,3, Z3)-free,

(β) G is (K1,3, P6)-free,

(γ) G is (K1,3, B1,2)-free.

Then G is Hamilton connected.

(iii) [5] Every 3-connected (K1,3, H1)-free graph is Hamilton connected.

On the other hand, the following result appeared in [5].

Theorem 2. [5] If X, Y is a pair of connected graphs such that X, Y 6' P3 and every 3-connected

(X, Y )-free graph is Hamilton connected, then, up to a symmetry, X = K1,3 and Y satisfies each of

the following conditions:

(a) ∆(Y ) ≤ 3,

(b) any longest induced path in Y has at most 9 vertices,

(c) Y contains no cycles of length at least 4,

(d) the distance between two distinct triangles in Y is either 1 or at least 3,

(e) There are at most two triangles in Y ,

(f) Y is claw-free.

In fact, we can show that item (d) can be strengthened to: the distance between two distinct tri-

angles in Y is either 1 or 3 which will follow from considering two examples G1 and G2 constructed

below. The reader will see that both G1 and G2 are 3-connected, claw-free, and not Hamilton

connected. Thus, in order for Hi to imply every 3-connected (C,Hi)-free graph is Hamilton con-

nected, Hi must be an induced subgraph of both G1 and G2. It will be apparent that the only two

such common induced subgraphs are H1 and H3, and the strengthened result follows. It is worth

noting that the construction and analysis of these examples exploits (in much simplified form) one

of the crucial techniques of the proof of Theorem 3: viewing the graph G as the line graph of a

(multi)graph H, where the properties of G may be easier to analyze.

Now we construct G1 and G2. Let F be the graph obtained from the cycle C8 with vertex set

{x1, ..., x8} by adding chords x1x5, x2x6, x3x7, x4x8. Let H1 be the graph obtained as a subdivision

of F. (That is, add one vertex of degree 2 into each edge.) Let H2 be the graph obtained from F

by adding a pendant edge to each vertex. Then, let G1 = L(H1) and G2 = L(H2). It is clear from

this construction that G1 and G2 are 3-connected and claw-free. The graph G1 has no Hamilton

3



path connecting edges x1y1 and x3y3 where y1 and y3 are the vertices added to F to subdivide the

chords at x1 and x3 respectively. The graph G2 has no Hamilton path connecting edges x1x5 and

x3x7.

Since H1 is bipartite, any path between any two vertices of degree 3 has even length. Hence, in

G1, any path between any two triangles has odd length. Thus, the distance between two distinct

triangles in Y must be odd.

In H2, the preimage of a triangle is a claw K1,3. The longest possible path between two such

claw centers has length 5. Hence the longest induced path between two triangles in G2 has length

4. But it must be odd by the previous observation. Hence, the only possible induced subgraphs Hi

common to both G1 and G2 are when i = 1 or i = 3. This concludes the argument that the distance

between two distinct triangles in Y is either 1 or 3.

Also, the graph G2 is an important example because it is easy to check that it has the following

properties:

(i) G2 is a 3-connected claw-free graph that is not Hamilton connected,

(ii) G2 contains an induced P9 and any induced Ni,j,k with i+ j + k ≤ 7,

(iii) G2 is P10-free and Ni,j,k-free for any i, j, k with i+ j + k ≥ 8.

Thus, the largest Pi that might imply a 3-connected (C,Pi)-free graph to be Hamilton connected

is P9, and the largest such Ni,j,k is that for i+ j + k = 7.

In this paper, we prove the following result.

Theorem 3. If G is a 3-connected (X, Y )-free graph for X = K1,3 and Y = P8, N1,1,3, or N1,2,2,

then G is Hamilton connected.

2 Preliminary Results

The main tool for proving our result will be the concept of multigraph closure (or briefly M-closure)

of a claw-free graph as introduced in [13].

A vertex x ∈ V (G) is k-eligible (k ≥ 1) if its neighborhood induces in G a k-connected noncom-

plete graph, and the k-closure of G, denoted clk(G), is the graph obtained from G by recursively

performing the local completion operation at k-eligible vertices as long as this is possible. A graph

G is k-closed if G = clk(G). The following properties of the k-closure will be important. (See [4],

[12].)

Theorem 4. For every claw-free graph G,

(i) [4] clk(G) is uniquely determined for any k ≥ 1,

(ii) [12] cl2(G) is Hamilton connected if and only if G is Hamilton connected.

It is easy to see that, in general, cl2(G) is not a line graph. Thus, another question is if a

2-closure of a claw-free graph is a line graph of a multigraph.
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Line graphs of multigraphs were characterized by Bermond and Meyer [2] (see also Zverovich [15])

in terms of seven forbidden induced subgraphs. Using this characterization it is easy to show (see

[12]) that, in general, cl2(G) is not a line graph of a multigraph, since the graphs S1 and S2 of the

characterization, shown in Figure 1, are 2-closed, i.e., they can be induced subgraphs in cl2(G).

However, it can be shown (see [12]) that a 2-closed graph cannot contain any of the remaining 5

forbidden subgraphs of the characterization.

Thus, a 2-closed claw-free graph can contain only induced S1 and/or S2, and an (S1, S2)-free

2-closed claw-free graph is a line graph of a multigraph. In the rest of the paper we will keep the

notation of the graphs S1, S2 as shown in Figure 1.

S1

u0

u1

u2

u3

u4

u5

S2

u0

u1

u2

u3

u4

u5

Figure 1: Two forbidden subgraphs for line graphs of multigraphs

Let J = u0u1 . . . uk+1 be a walk in G. We say that J is good in G, if k ≥ 4, J2 ⊂ G and for any

i, 0 ≤ i ≤ k − 4, the subgraph induced by {ui, ui+1, . . . , ui+5} is isomorphic to S1 or to S2. The

following lemma shows that good walks in a 2-closed graph have a very special structure.

Lemma 1. [13] Let G be a connected 2-closed claw-free graph that is not the square of a cycle, and

let J = u0u1 . . . uk+1 be a good walk in G, k ≥ 5. Then

(i) dG(ui) = 4, i = 3, . . . , k − 2,

(ii) u1 . . . uk is a path.

Finally, a good walk J is maximal if, for every good walk J ′ in G, J being a subsequence of J ′

implies J = J ′. It can be shown (see [13]) that if G is connected, 2-closed and is not the square of

a cycle, then every good walk is contained in some maximal good walk, and maximal good walks

are pairwise internally vertex-disjoint.

The M-closure of a claw-free graph G can be now defined as the graph clM(G) obtained by the

following algorithm (see [13]).

Let G be a connected claw-free graph that is not the square of a cycle.

1. Set G1 = cl2(G), i := 1.

2. If Gi contains a good walk, then

(a) choose a maximal good walk J = u0u1 . . . uk+1,
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(b) set Gi+1 = cl2((Gi)
∗
u1uk

),

(c) i := i+ 1 and go to (2).

3. Set clM(G) = Gi.

A graph G is said to be M-closed if G = clM(G).

The following result from [13] summarizes basic properties of the M-closure.

Theorem 5. [13] Let G be a connected claw-free graph and let clM(G) be the M-closure of G. Then

(i) clM(G) is uniquely determined,

(ii) there is a multigraph H such that clM(G) = L(H),

(iii) clM(G) is Hamilton-connected if and only if G is Hamilton-connected.

A well-known drawback of line graphs of multigraphs is the fact that the preimage of a given

line graph G is not uniquely determined, i.e., there can be multigraphs H1, H2 such that H1 6' H2

but L(H1) ' L(H2). It was shown in [13] that this problem can be avoided under a very natural

additional assumption that simplicial vertices in G = L(H) correspond to pendant edges in H.

Theorem 6. [13] Let G be a connected line graph of a multigraph. Then there is, up to an

isomorphism, a uniquely determined multigraph H = L−1
M (G) such that a vertex e ∈ V (G) is

simplicial in G if and only if the corresponding edge e ∈ E(H) is a pendant edge in H.

Now it is easy to characterize all preimages of M-closed line graphs of multigraphs.

Theorem 7. [13] Let G be a claw-free graph and let T1, T2, T3 be the graphs shown in Figure 2.

Then G is M-closed if and only if G is a line graph of a multigraph and L−1
M (G) does not contain

a subgraph S (not necessarily induced) isomorphic to any of the graphs T1, T2 or T3.

T1 x1

x2

T2 x1

x2

T3 x1

x2

Figure 2: Forbidden subgraphs for preimages of M-closed graphs

Let i, j, k ≥ 1. In [6], it was shown that if G is a (K1,3, Pi)-free or (K1,3, Ni,j,k)-free graph, then

so is G
∗
x, for any 1-eligible vertex x ∈ V (G). Since clM(G) is obtained from G by a sequence of local

completions and a 2-eligible vertex is also 1-eligible, we immediately have the following facts.
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Theorem 8. Let G be a claw-free graph.

(i) If G is Pi-free (i ≥ 1), then clM(G) is also Pi-free.

(ii) If G is Ni,j,k-free (i, j, k ≥ 1), then clM(G) is also Ni,j,k-free.

The line graph preimage counterpart of hamiltonicity was established by Harary and Nash-

Williams [10] who showed that a line graph G of order at least 3 is Hamiltonian if its preimage

H = L−1(G) contains a dominating eulerian subgraph (i.e., an Eulerian subgraph T such that

every edge of H has at least one vertex on T ). A similar argument gives the following analogue for

Hamilton connectedness (see e.g. [11]).

Theorem 9. [11] Let H be a multigraph with |E(H)| ≥ 3. Then G = L(H) is Hamilton connected

if and only if for any pair of edges e1, e2 ∈ E(H), H has a dominating (e1, e2)-trail.

In [5] (and in a different form in [8]) the following result appears.

Lemma 2. [5] For any pair of vertices x and y in a 3-connected claw-free graph G, there is a

maximal (x, y)-path P such that N(x) ⊆ V (P ).

The following lemma is a translation of Lemma 2 to a multigraph preimage in the special case

of line graphs of multigraphs.

Lemma 3. Let M be a multigraph such that G = L(M) is 3-connected. Then for every pair of

edges e = e1e2 and f = f1f2 in M , there exists a maximal (e, f)-trail T such that all edges incident

to e1 or e2 are dominated by T .

From Lemma 3 we have the following structural lemma. For ease of reference, given a trail T ,

we label as I(T ) the interior trail of T obtained by deleting the first and last edges from T.

Lemma 4. Let M be a multigraph such that G = L(M) is 3-connected and not Hamilton connected.

Let e and f be edges in M such that there does not exist a dominating (e, f)-trail. Then there exists

a maximal (e, f)-trail, T, such that for every edge h = h1h2 not dominated by T there exist at least

two edge disjoint paths, Q1 and Q2, from h to I(T ) with the following properties:

(a) for each i, the only vertex in I(T ) ∩Qi is the last one on path Qi,

(b) the last vertex on Q1 and the last vertex on Q2 are distinct,

(c) neither Q1 nor Q2 use edges e or f .

Proof. Let e and f be edges and T a trail in M satisfying the conditions in Lemma 3. Let h = h1h2

be an edge not dominated by T. Since M is essentially 3-edge-connected there exist at least three

edge disjoint paths from h to I(T ). Choose these paths to be as short as possible. This forces

criterion (a). Criterion (b) follows from the observation that if any two paths end at the same

vertex in I(T ), then it is possible to add to T a loop that dominates more edges, contradicting

the maximality of T. Finally, to prove criterion (c), observe that since all edges incident to e1 are
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dominated by T , given any edge e1v ∈ E(M) either e1 or v is a vertex on I(T ). But, if e1 appears

on the interior of Qi, say Qi = h1 · · · ve1w · · ·xi, then we have a contradiction since either e1 or v is

a vertex in I(T ). Thus, e1 cannot appear on any of the paths from h to I(T ) except (possibly) as

the last vertex on that path. Thus, edge e cannot appear on any of the t paths. Hence criterion (c)

holds.

3 Proof of Theorem 3

Before beginning the formal proof, it is useful for the reader to know that all three parts of Theorem 3

will be proved simultaneously. Also, we make some elementary observations and introduce some

notation.

Assume M is a multigraph and G = L(M). Then G contains an induced P8 if and only if M

contains a (not necessarily induced) P9. Similarly, G contains an induced N1,1,3 (or N1,2,2) if and only

if M contains a subdivided K1,3 where two edges are subdivided once and one edge is subdivided

three times (or a K1,3 where one edge is subdivided once and two edges are subdivided twice.) See

the figures below.

L−1(N1,1,3) L−1(N1,2,2)

We will refer to these preimages as L−1(P8), L
−1(N1,1,3), and L−1(N1,2,2) respectively. For graphs

L−1(N1,1,3) and L−1(N1,2,2) we will refer to the unique vertex of degree three as the center vertex.

Also, as in the proof of Lemma 4, if T is a trail in M , then the interior of T , denoted I(T ), is

the subtrail of T obtained by deleting the first and last edges of T.

Finally, assume we have an (e, f)-trail and an edge h that is not dominated by T . We will

repeatedly refer to the existence of a better trail. This will, in all cases, mean a trail that includes

all vertices of T plus at least one end vertex of h, thus implying that T is not a maximal (e, f)-trail.

Proof. Let G be a 3-connected (C,X)-free graph for X = P8, N1,1,3, or N1,2,2 and assume G is not

Hamilton connected. By Theorems 5 and 8 we can assume G is M-closed. Let M be a multigraph

such that L(M) = G.

Since G is not Hamilton connected, let e = e1e2 and f = f1f2 be edges in M such that M does

not contain a dominating (e, f)-trail. As M is connected we know there exists some (e, f)-trail

T . We claim it is possible to choose an (e, f)-trail T in M such that all edges incident to any of

{e1, e2, f1, f2} are dominated by T.
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If either e or f are pendant edges in M , apply Lemma 4 such that a pendant edge plays the role

of edge f at the end of the trail and the claim follows. Thus we assume the degree of e1, e2, f1, f2

are all at least 2. Since M is essentially 3-edge-connected we know there are at least three edge

disjoint paths from e to f .

It must be possible to choose these three paths such that one begins at vertex e1 and a second

begins at e2. If this were not possible, all such paths would begin at, say, e1. But this implies edge

e forms an essential cut separating edge f from other edges incident to vertex e2, a contradiction.

A second application of this argument implies that one path must end at f1 and a second must end

at f2.

Now the Pigeon-Hole Principle implies that, without loss of generality, path P1 is an (e1, f1)-

path and P2 is an (e2, f2)-path. If P3 is either an (e1, f2)-path or an (e2, f1)-path, then the trails

e1e2P2f2P3e1P1f1f2 or e2e1P1f1P3e2P2f2f1 respectively are (e, f)-trails dominating all edges incident

to any of e1, e2, f1, and f2. (See Figure 3.)

f1 f2

e1 e2

P2P1

f1 f2

e1 e2

P2P1

Figure 3:

Thus it remains to show that if P3 is an (e1, f1)-path, an appropriate (e, f)-trail is possible.

Label the vertices of P2 as v0 = e2, v1, v2, · · · , vm = f2. Using again the essential 3-connectedness

of M , edges e and f cannot form an essential edge cut separating V (P2) from V (P1 ∪ P3). Thus,

there must exist a path between these two sets disjoint from e and f . Let S ⊆ V (P2) such that

vi ∈ S if there exists a path from vi to V (P1 ∪ P3) disjoint from e and f and edge-disjoint from P2.

Assume deg(e2) ≥ 3. (The case when deg(e2) = 2 proceeds in a similar fashion by observing

that in this case deg(v1) ≥ 3.) There is some smallest i such that vi ∈ S. Note that i ≥ 1 or the

desired trail exists from a previous argument. Now the edges e and vi−1vi cannot form an essential

edge cut separating edges incident to e2 from V (P1 ∪ P3). So there must exist a path P ′ from e2

to V (P1 ∪ P3) disjoint from e and vi−1vi. Since e2 6∈ S, this path must use an edge on P2. Let vi0

be the first vertex that P ′ shares with P2 other than v0. (See Figure 4 (a).) If i0 ≥ i, the trail:

f1, f2, P2, vi0 , P
′, e2, P2, vi, Qi, f1, P1, e1, e2 dominates the necessary edges, where Qi is a path from

vi to f1 that without loss of generality we assume uses P3. (See Figure 4 (b).)

But i0 < i implies edges e and vi0vi0+1 form an essential edge cut unless there exists another

path from the vertices {v1, v2, · · · vi0} to {vi0+1, · · · vm} disjoint from e, vi0vi0+1, and P2. Let vj ∈
{v1, v2, · · · vi0} be the first vertex on this path P ′′ and vij ∈ {vi0+1, · · · vm} be the last. (See Figure
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4 (c).) If ij ≥ i, the trail: f1, f2, P2, vij , P
′′, vj, P2, e2, P

′, vi0 , P2, vi, Qi, f1, P1, e1, e2 dominates the

necessary edges. (See Figure 4 (d).)

f1 f2

e1 e2

v1
v2

vi0

P2P1

P ′

f1 f2

e1 e2

vi0

vi

vi−1

P2P1 P ′

f1 f2

e1 e2

vi0

v1

vj

vij

vi0+1

P2

P1

P ′

P ′′

f1 f2

e1 e2

vij

vi

vi0+1

vi0

vj

P1

P2

P ′

P ′′

part (a) part (b) part (c) part (d)

Figure 4:

If ij < i, then e and vijvij+1 cannot form an essential edge cut, and the same process begins

again – there must exist a path from the set {vi0+1, · · · vij} to {vij+1, · · · vm}. But as m is finite, this

process must terminate in a desired trail.

Thus, we know it is possible to find an e, f -trail in M such that all edges incident to any of

{e1, e2, f1, f2} are dominated. Among all trails with this property, we choose a trail T that dominates

the most edges of M .

Now, assume h = h1h2 is an edge not dominated by T. Let x1, x2, and x3 be end vertices of

three shortest edge disjoint paths from h to T. Note that our choice of T implies that x1, x2, and

x3 are distinct vertices on I(T ). Thus, h1 and h2 are distinct from x1, x2, and x3. Without loss of

generality, assume that the first appearance of vertex x1 on T occurs before that of x2, which in

turns appears before x3.

Define T1,2 to be the subtrail of T between the first occurrence of x1 and the first occurrence

of x2. Let P1 be an (x1, x2)-path constructed from T1,2 by deleting any loops. Specifically, if the

vertices of T1,2 are listed as they occur: x1 = v0, v1, · · · , vn, vn+1 = x2, and vertex v appears in

positions vi and vj for i < j, then delete the loop vivi+1...vj−1vj. Continue this process until no

vertices are repeated to obtain P1. The deleted subgraph will be the union of Euler circuits each

of which contains at least one vertex on P1. If a particular circuit contains vertex v from P1, we

say the edges of that circuit are accessible from v. Of all the ways to construct P1 we choose the

construction such that P1 is as short as possible. Second, if any Euler circuit is accessible from a

vertex of I(T ) outside T1,2, we move it to the alternate vertex. Finally, we define the interior of P1,

denoted I(P1), to be the subpath of P1 obtained by deleting the first and last edges of P1.

We define T2,3 and choose P2 in the same fashion. We do not assert that P1 ∪ P2 necessarily

form a path. Let i1 = |V (I(P1))| and i2 = |V (I(P2))|. Clearly i1, i2 ≥ 1 since otherwise T is not

maximal.
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Figure 5 below illustrates an instance of P1 ∪ P2 along with paths from h. Note that in this

illustration P1 = x1z1,1 · · ·x2 and P2 = x2z2,1 · · ·x3. It is possible that {z1,1, · · · z1,i1}∩{z2,1, · · · z2,i2}
may not be empty, though we can assume x1 6= x2 6= x3, x2 6= zi,j, x3 6= zi,j, and x1 6= z1,j. In

particular, it is possible for x1 ∈ {z2,1, · · · , z2,i2}. Since xi is in I(T ) for all i, we do know there

exists a vertex on T prior to x1, denoted x−1 and a vertex following x3, denoted x+
3 . It is possible for

x−1 x1 = e and x3x
+
3 = f. Finally, paths from h to T may be more complicated than the illustration

suggests. Specifically, these paths could be long and intersecting and may use both end vertices of

h. However, we know each path consists of at least one edge and the limiting case is always the

instance in which the non-dominated edge h has exactly three edges to T all using a single vertex

of h. That is, if this case is proved, all others easily follow.

x−1 x1
z1,1 z1,2 z1,i1 x2

z2,1 z2,2 z2,i2 x3 x+
3

h1 h2

Figure 5: structure of worst case in general

Next, for v ∈ I(P1) ∪ I(P2), we define a crucial edge incident to v as an edge vw such that (1)

w 6∈ V (I(T )) or (2) edge vw is on an Euler circuit accessible only from vertices of Pi for some i or

(3) vw is an edge of Pi and neither v nor w appears on I(T ) outside Ti,i+1. Intuitively, crucial edges

are edges that force vertex v to be on T. Clearly, for all i, Pi must contain a vertex that appears

nowhere on I(T ) outside Ti,i+1 and is incident to a crucial edge. Observe that crucial edges of type

(1) or (2) lie off the paths P1 and P2. These will be used frequently in the proof and thus, for ease

of reference, we will call crucial edges of type (1) or (2) green edges.

The remainder of the proof will be split into cases according to the lengths of P1 and P2 and

the nature of their intersections if they exist.

Claim A: For j = 1, 2, ij ≤ 3.

Assume ij ≥ 4 for some j = 1 or 2. Then Pj along with h and the paths from h to xj and xj+1

must form an induced cycle, Cs, where s ≥ 7. See Figure 6.

Note that M must have an edge not dominated by Cs since the other path, Pj+1 (where j + 1

is considered modulo 2), must have a crucial edge. But now Cs along with any edge a distance 1

away from Cs contains L−1(P8), L
−1(N1,1,3), and L−1(N1,2,2). This concludes the proof of Claim A.

Claim B: If ij = 1 for j = 1 or 2, then zj,1 is incident to a green edge, zj,1 6= x−1 , and P1P2 is a

path.

First, observe that zj,1 must have some crucial edge incident to it or again there exists a better

11



xj zj,1 zj,2 zj,3 zj,4
xj+1

h1 h2

Figure 6: Claim A

trail and since zj,1 is the only vertex on I(Pj) this crucial edge must be green. Second, observe that

if zj,1 = x−1 , then a better trail exists.

Finally, to show P1P2 is a path, we need to show zj,1 6∈ V (I(Pj+1)) and x1 6∈ V (I(P2)). If

zj,1 ∈ V (I(Pj+1)), then a better trail exists. If x1 = z2,1 or x1 = z2,i2 , then a better trail exists. If

i2 = 3 and x1 = z2,2, then z2,3 must be incident to a green edge or a better trail exists. But now,

the graph containing P1P2, h, paths from h to P1P2 and the two green edges at z1,1 and z2,3 must

contain L−1(P8), L
−1(N1,1,3), and L−1(N1,2,2). Thus, x1 6∈ V (I(P2)).

This completes the proof of Claim B.

Claim C: i1 ≥ 2 and i2 ≥ 2

Assume there exists a path, Pj, such that |I(Pj)| = 1. We will split the argument into three

cases.

Case 1: i1 = i2 = 1

Let z1 and z2 be the internal vertices on each path. Let z1w1 and z2w2 be the green edges

incident to these internal vertices. Let x−1 be the vertex that precedes x1 on T . Then Claim B

implies x−1 x1z1x2z2x3 must be a path. If w1 = w2 we have a better trail. Thus all the vertices

x−1 , x1, z1, x2, z2, x3, w1, w2 are distinct. Define S = 〈x−1 , x1, z1, w1, x2, z2, w2, x3〉. Now consider S

along with the three edge disjoint paths from h. See the figure below.

x−1 x1

z1

x2

z2

x3

w1 w2

h1 h2

This structure always contains L−1(N1,2,2). If any of the paths from h are more than a single edge,

this structure also contains L−1(P8) and L−1(N1,1,3). Furthermore, if there exist two independent

edges from h to S the structure contains L−1(P8) and L−1(N1,1,3). So, we assume that all three

paths from h to S are edges incident to vertex h2 of edge h.

Let H = 〈x−1 , x1, z1, w1, x2, z2, w2, x3, h1, h2〉. Observe that if x−1 is adjacent to a vertex other

than those in H, then M contains L−1(P8) and L−1(N1,1,3). So, any edges in M incident to x−1 must

12



be incident to other vertices of H. But in every case (except x1) the existence of these edges implies

M contains a better trail. So x−1 may have a second edge to x1 but can have no other edges in M

whatsoever.

But M is essentially 3-edge connected. So there must exist an additional edge disjoint path from

x−1 or x1 to H − {x−1 , x1}. But the addition of any path from {x−1 , x1} to H − {x−1 , x1} produces a

better trail since such a path must use x1 and have length at most two such that the middle vertex

has no additional neighbors. This completes the proof of Case 1.

Case 2: i1 + i2 = 3

There are two possibilities: x−1 x1z1,1x2z2,1z2,2x3 or x−1 x1z1,1z1,2x2z2,1x3. If path Pi,i+1 has only

one interior vertex, zi,1, then that vertex must be incident to at least one green edge. Call this edge

zi,1wi. See Figure 7.

x−1 x1

z1,1

x2
z2,1 z2,2 x3

h1 h2

w1

x−1 x1
z1,1 z1,2 x2

z2,1

x3

h1 h2

w2

Figure 7: Case C.2

First, we will show that x−1 P1P2 is not a path. If x−1 P1P2 is a path, then every configuration

of x−1 P1P2 including wi and edge h includes L−1(P8) and L−1(N1,2,2). Furthermore, if i1 = 2 and

i2 = 1, then the graph contains L−1(N1,1,3). So the only remaining case is when i1 = 1 and i2 = 2.

But in this arrangement, edge x−1 x1 must have at least one additional path to T − {x−1 , x1}. If

x−1 has an edge to a vertex not shown or to z2,1 the graph contains L−1(N1,1,3). If x−1 has an edge

to any of the other vertices, there exists a better trail. A similar argument applies to vertex x1.

Specifically, if there exists a path of length 2 starting at x1 independent of H − {x−1 , x1}, then the

graph contains L−1(N1,1,3). If there exists an edge (or path) from x1 to any vertex of H other than

z2,1, then there exists a better trail. If there exists an edge (or path) from x1 to z2,1, then the graph

contains L−1(N1,1,3). Thus, x−1 P1P2 cannot be a path.

However, if x−1 P1P2 is not a path, Claim B implies that the only vertices that could appear

more than once are x−1 and the interior vertices on the Pj for which ij = 2. Thus, the only possible

repetitions are: (i) x−1 = z1,1, (ii) x−1 = z1,2, (iii) x−1 = z2,1, and (iv) x−1 = z2,2. Instances (ii) and (iv)

immediately lead to better trails. In arrangement (iii), there is immediately a better trail, unless

vertex z2,2 is incident to a green edge. But this implies the graph contains a L−1(P8), L
−1(N1,2,2)

(center h2), and L−1(N1,1,3) (center x2). See figure below.

Finally, in the case x−1 = z1,1, observe that the graph is not presently essentially 3-edge connected.

See figures below.
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x−1 x1 x2 x3

h1 h2

w1 w2

x−1

z1,1

x1

z1,2 x2
z2,1 x3

h1 h2

Specifically, there must be another path from {x−1 , x1} to M − {x1, x
−
1 }. Note that since M

contains a C7 = x1x
−
1 z1,2x2z2,1x3h2x1, this cycle must dominate all edges of M . So any path from

the vertices {x−1 , x1} to H−{x−1 , x1} is either an edge or a path of length two whose interior vertex

has no neighbors. But every such path produces a better trail.

This completes the proof of Case 2.

Case 3: i1 + i2 = 4

In this case P1P2 either has structure x1z1,1x2z2,1z2,2z2,3x3 or x1z1,1z1,2z1,3x2z2,1x3. See Figure 8.

x−1 x1

z1,1

x2
z2,1 z2,2 z2,3 x3

h1 h2

w1

x−1 x1
z1,1 z1,2 z1,3 x2

z2,1

x3

h1 h2

w2

Figure 8: Case C.3

Again, the Pi containing a single interior vertex is incident to a green edge. Now the graph con-

taining P1P2 (ignoring x−1 ) along with h and its paths to P1P2 always contains L−1(P8), L
−1(N1,2,2),

and L−1(N1,1,3).

This completes the proof of Case 3 and the proof of Claim C.

Now we conclude that I(Pj) contains either 2 or 3 vertices, producing 4 distinct cases. We will

make a few general observations and then proceed by cases.

First observe that x−1 P1P2 cannot be a path as in that caseM would contain L−1(P8), L
−1(N1,1,3),

and L−1(N1,2,2). Also, observe that certain repetitions of vertices immediately give rise to a better

trail. These are: x−1 = z1,i1 , x
−
1 = z2,i2 z1,1 = z2,1, z1,i1 = z2,i2 , x1 = z2,1, and x1 = z2,i2 .

14



In every case, let S = x−1 x1z1,1z1,2(z1,3)x2z2,1z2,2(z2,3)x3.

Case 1: i1 = i2 = 2

Subcase 1.1: |V (S)| = 7 (That is, one vertex on S is repeated.)

Then the possibilities that do not immediately lead to a better trail are: x−1 = z1,1, x
−
1 = z2,1,

z1,1 = z2,2, and z1,2 = z2,1. In each of these instances, the trail can be extended to dominate h

unless particular vertices on S are incident to pendant green edges. These particular vertices are

(respectively) z1,2, z2,2, z2,1, and, in the last case, both z1,1 and z2,2. Once these pendant edges are

added, each graph contains L−1(P8), L
−1(N1,1,3), and L−1(N1,2,2). See the figures below.

x−1 = z1,1 x−1 = z2,1

x−1

z1,1

x1 z1,2

x2 x3

h1 h2

x−1

z2,1

x1 x2

z2,2

x3

h1 h2

z1,1 = z2,2 z1,2 = z2,1

x−1

z2,1

x1
z1,1

z2,2

x2

z2,1

x3

h1 h2

x−1

z2,1

x1

z1,1

z1,2

z2,1 x2 z2,2

x3

h1 h2

Subcase 1.2: |V (S)| = 6 (That is, either one vertex is used three times on S or two vertices each

appears twice.)

The only vertex that could appear three times is x−1 . Since x−1 6= zj,2, the only possibility is

x−1 = z1,1 = z2,1; but the second equality immediately produces a better trail. So there must be

two vertices each appearing twice. The possibilities are: x−1 = z1,1 and z1,2 = z2,1 or x−1 = z2,1 and

z1,1 = z2,2 (see figures below) and both produce better trails.

x−1 = z1,1 and z1,2 = z2,1 x−1 = z2,1 and z1,1 = z2,2

x−1

z1,1

x1
z1,2 x2

z2,2 x3

h1 h2

x−1

z2,1

x1
z1,1 z1,2 x2 x3

h1 h2
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This concludes the proof of Case 1.

Case 2: i1 = 3, i2 = 2

Note that if S − x−1 is a path, then M contains L−1(P8), L
−1(N1,1,3), and L−1(N1,2,2).

Subcase 2.1: |V (S − x−1 )| = 7 (That is, there is one repeated vertex.)

The possibilities are: z1,1 = z2,2, z1,2 = z2,1, z1,2 = z2,2, and z1,3 = z2,1. In each case, a better

trail exists unless a specific vertex is incident to a green edge. The specific vertex is (respectively)

z2,1, z2,2, z2,1, z2,2. In all cases except the last, the multigraph contains L−1(P8), L
−1(N1,1,3), and

L−1(N1,2,2). In the last instance, the multigraph contains L−1(P8) and L−1(N1,2,2). See figures below.

z1,1 = z2,2 z1,2 = z2,1

x1
z1,1 z1,2 z1,3 x2 x3

h1 h2

x1
z1,1 z1,2 z1,3 x2 x3

h1 h2

z1,2 = z2,2 z1,3 = z2,1

x1
z1,1 z1,2 z1,3 x2 x3

h1 h2

x1
z1,1 z1,2 z1,3 x2 x3

h1 h2

To finish this last case, we consider vertex x−1 . If x−1 is the same as z1,2, z1,3 = z2,1, or z2,2, a

better trail exists. If x−1 is independent of the other vertices of S, then S contains L−1(N1,1,3). If

x−1 = z1,1 then z1,2 has a pendant green edge and the multigraph contains L−1(N1,1,3).

Subcase 2.2: |V (S − x−1 )| = 6

Note that it is not possible for a single vertex in S − x−1 to be repeated twice. The possibilities

are z1,1 = z2,2 and z1,2 = z2,1 or z1,1 = z2,2 and z1,3 = z2,1 or z1,2 = z2,2 and z1,3 = z2,1. In each case

a better trail is possible.

z1,1 = z2,2 and z1,2 = z2,1 z1,1 = z2,2 and z1,3 = z2,1

x1
z1,1 z1,2 z1,3 x2 x3

h1 h2

x1
z1,1 z1,2 z1,3 x2 x3

h1 h2
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z1,2 = z2,2 and z1,3 = z2,1

x1
z1,1 z1,2 z1,3 x2 x3

h1 h2

This completes the proof of Case 2.

Case 3: i1 = 2, i2 = 3

Note that other than two instances, this case is completely symmetric to that of Case 2. The

first instance to consider is the one configuration from Case 2 in which vertex x−1 is used. Recall

that this is the case where z1,2 = z2,1 and the configuration (without x−1 ) contains L−1(P8) and

L−1(N1,2,2), but not L−1(N1,1,3). See figure below.

x−1 x1
z1,1 z1,2 x2

z2,2 z2,3 x3

h1 h2

In this case, we observe that if x−1 is independent of the remaining vertices of S or x−1 = z2,2,

then M contains L−1(N1,1,3). If x−1 is the same as z1,1, z1,2 = z2,1, z2,3, then a better trail exists.

The second instance which is special to this case is when x1 = z2,2. In this case, z2,1 must be

incident to a green edge or a better trail exists. Now, S − x−1 along with the green edge contains

L−1(P8), L
−1(N1,2,2), and L−1(N1,1,3). See figure below.

x−1 x1
z1,1 z1,2 x2

z2,1 x3

h1 h2

This concludes the proof of Case 3.

Case 4: i1 = i2 = 3

Similarly, if S − x−1 is a path, then M contains L−1(P8), L
−1(N1,1,3), and L−1(N1,2,2).

Subcase 4.1: Assume |V (S − x−1 )| = 8 (That is, there exists one vertex repeated twice.)

The possibilities are: x1 = z2,2, z1,1 = z2,2, z1,1 = z2,3, z1,2 = z2,1, z1,2 = z2,2, z1,2 = z2,3,

z1,3 = z2,1, and z1,3 = z2,2. In each case, M contains L−1(P8), L
−1(N1,1,3), and L−1(N1,2,2). See

figures below.
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x1 = z2,2 z1,1 = z2,2

x1
z1,1 z1,2 z1,3 x2

z2,1 z2,3 x3

h1 h2

x1
z1,1 z1,2 z1,3 x2

z2,1 z2,3 x3

h1 h2

z1,1 = z2,3 z1,2 = z2,1

x1
z1,1 z1,2 z1,3 x2

z2,1 z2,2 x3

h1 h2

x1
z1,1 z1,2 z1,3 x2

z2,2 z2,3 x3

h1 h2

z1,2 = z2,2 z1,2 = z2,3

x1
z1,1 z1,2 z1,3 x2

z2,1 z2,3 x3

h1 h2

x1
z1,1 z1,2 z1,3 x2

z2,1 z2,2 x3

h1 h2

z1,3 = z2,1 z1,3 = z2,2

x1
z1,1 z1,2 z1,3 x2

z2,2 z2,3 x3

h1 h2

x1
z1,1 z1,2 z1,3 x2

z2,1 z2,3 x3

h1 h2

Subcase 4.2: Assume |V (S − x−1 )| = 7

Again, it is not possible for a single vertex to be used three times, so assume two vertices are

each used exactly twice. There are 15 possibilities listed below.

x1 = z2,2 and z1,1 = z2,3 x1 = z2,2 and z1,2 = z2,1

x1
z1,1 z1,2 z1,3 x2

z2,1 x3

h1 h2

x1
z1,1 z1,2 x2

z2,3 x3

h1 h2
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x1 = z2,2 and z1,2 = z2,3 x1 = z2,2 and z1,3 = z2,1

x1
z1,1 z1,2 z1,3 x2

z2,1 x3

h1 h2

x1
z1,1 z1,2 x2

z2,3 x3

h1 h2

z1,1 = z2,2 and z1,2 = z2,1 z1,1 = z2,2 and z1,2 = z2,3

x1
z1,1 z1,2 z1,3 x2

z2,3 x3

h1 h2

x1
z1,1 z1,2 x2 x3

h1 h2

z1,1 = z2,2 and z1,3 = z2,1 z1,1 = z2,3 and z1,2 = z2,1

x1
z1,1 z1,2 z1,3 x2

z2,3 x3

h1 h2

x1
z1,1 z1,2 z1,3 x2

z2,2 x3

h1 h2

z1,1 = z2,3 and z1,2 = z2,2 z1,1 = z2,3 and z1,3 = z2,1

x1
z1,1 z1,2 x2 x3

h1 h2

x1
z1,1 z1,3 x2 x3

h1 h2

z1,1 = z2,3 and z1,3 = z2,2 z1,2 = z2,1 and z1,3 = z2,2

x1
z1,1 z1,2 z1,3 x2

z2,1 x3

h1 h2

x1
z1,2 z1,3 x2 x3

h1 h2
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z1,2 = z2,2 and z1,3 = z2,1 z1,2 = z2,3 and z1,3 = z2,1

x1
z1,2 z1,3 x2 x3

h1 h2

x1
z1,1 z1,2 z1,3 x2

z2,2 x3

h1 h2

z1,2 = z2,3 and z1,3 = z2,2

x1
z1,1 z1,2 z1,3 x2

z2,1 x3

h1 h2

In all cases, the remaining vertices must be distinct. Other than five exceptional cases, all

configurations immediately produce a better trail. In those five exceptional cases, there exist two

vertices which must be adjacent to green edges or a better trail exists. Using the green edges, all

five configurations each contain L−1(P8), L
−1(N1,1,3) and L−1(N1,2,2).

This concludes this case and the proof of Theorem 3.

4 Concluding Remarks

If we now return to the discussion in Section 1, we can describe several remaining questions. The last

example in this section shows that the pairs (C, Y ) for Y = P9 and Y = Ni,j,k with 6 ≤ i+ j+k ≤ 7

remain open. As for pairs of the form (C, Y ) for Y = Zi and Y = Bi,j, we have no improvement;

the reason is that the (C,Zi)-free and (C,Bi,j)-free classes are not stable (i.e. the analogue of

Theorem 8 fails) under the 2-closure. Attacking these pairs will require the development of new

techniques. One potential pair is (C,H3). In fact, there are a variety of potential subgraphs obtained

by attaching paths to vertices of degree 2 in H1 or in H3.
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