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Abstract

The rainbow connection number of a graph G is the least number of
colours in a (not necessarily proper) edge-colouring of G such that every
two vertices are joined by a path which contains no colour twice. Improving
a result of Caro et al., we prove that the rainbow connection number of
every 2-connected graph with n vertices is at most dn/2e. The bound is
optimal.

1 Introduction

We investigate a problem related to the concept of rainbow connection in graphs,
introduced by Chartrand et al. [5]. Let G be an undirected graph with a colouring
c of the edges, which is not assumed to be proper (that is, adjacent edges may
get the same colour). A subgraph H of G is rainbow (with respect to c) if no
two edges of H have the same colour under c. The edge-coloured graph (G, c)
is rainbow-connected if every pair of vertices is joined by a rainbow path. The
rainbow connection number of G, denoted by rc(G), is the least number of colours
in a colouring which makes G rainbow-connected.

If G has n vertices, then rc(G) ≤ n − 1 as one may colour each edge of a
spanning tree of G with a different colour, and use one of these colours for all
the remaining edges. Chartrand et al. [5] determined the rainbow connection
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number of several classes of graphs, such as the complete multipartite graphs.
The rainbow connection number has been studied for further graph classes in [3]
and for graphs with fixed minimum degree in [3, 7, 11, 12].

The computational complexity of rainbow connectivity has been studied in
[2] where it is proved that determining the rainbow connection number is an NP-
complete problem. Indeed, it is already NP-complete to decide whether rc(G)
equals two [2]. More generally, it was shown in [8] that for any fixed k ≥ 2,
deciding if rc(G) = k is NP-complete.

Caro et al. [3] proved the following upper bound for the rainbow connection
number of a 2-connected graph:

Theorem 1 ([3]). If G is a 2-connected graph on n vertices, then

rc(G) ≤ n

2
+O(

√
n).

In this paper, we improve this upper bound to an optimal one, which is
attained, e.g., for all odd cycles:

Theorem 2. For any 2-connected graph G with n vertices,

rc(G) ≤
⌈n

2

⌉
.

We remark that during the review process of this paper, an independent proof
of Theorem 2 was published in [9]. Furthermore, the authors of [9] conjecture a
positive answer to the question in our Problem 9 and prove several partial results
in this direction.

The proof of Theorem 2 will be presented in Section 4. It is based on several
lemmas which are established in the Sections 2 and 3.

In the remainder of this section, we fix the necessary notation and terminology.
For the terms not defined here, as well as for broader background, the reader may
wish to consult [1].

Our graphs are finite, undirected and simple; in particular, parallel edges are
not allowed. The vertex and edge sets of G are denoted by V (G) and E(G). The
number of vertices of a graph G is denoted by |G|. A path with endvertices x
and y is referred to as an xy-path. For H ⊆ G, an H-path is a path disjoint
from H except for its endvertices, which are contained in H. If P is a path in G
and u, v ∈ V (P ), then uPv denotes the unique subpath of P with endvertices u
and v. If Q is a path with v, w ∈ V (Q), then uPvQw denotes the concatenation
of uPv and vQw. This may in general be a walk rather than a path, but this
distinction is not too important since any rainbow uw-walk contains a rainbow
uw-path.

Throughout this paper, the term colouring will be used as in this section —
meaning an edge-colouring which is not necessarily proper. It is convenient to
call a colouring c of G rainbow-connecting if (G, c) is rainbow-connected. Since
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a colouring c is, formally, a function defined on E(G), it makes sense to let im c
denote the set of all colours used by c.

A somewhat technical strengthening of the concept of a rainbow-connecting
colouring will be useful in our proofs. Let us call a rainbow path in (G, c) blocking
if it uses all colours in im c. Given vertices x, y ∈ V (G), we say that y is blocked
for x if all rainbow xy-paths are blocking. A colouring is safe if for each vertex
x, there is at most one blocked vertex y. A colouring which is both safe and
rainbow-connecting is said to be safely rainbow-connecting.

Let A be a set of colours and let c0 be a colouring of G. A subgraph H ⊆ G
is A-free in (G, c0) if no colour from A is used by c0 on an edge of H. To simplify
the notation, we abbreviate, e.g., ‘{α, γ}-free’ to ‘αγ-free’.

In the proofs in this paper, we use the symbol � to mark the end of the proof
of a claim. The same symbol is used at the end of the discussion of each case in
a case analysis.

2 A lemma on paths

In this section, we prove a lemma which is one of the key parts of our argument.
Let H be a subgraph of G. A subgraph H ′, H ⊆ H ′ ⊆ G, is a k-extension of

H with path sequence (P1, . . . , Pk) if each Pi is an (H ∪ P1 ∪ . . . Pi−1)-path with
at least one endvertex in V (P1 ∪ · · · ∪ Pi−1), and

H ′ = H ∪ P1 ∪ · · · ∪ Pk.

If k is not important, we just say that H ′ is an extension of H. An extension
is even (odd) if all the paths in the path sequence are even (odd, respectively).
(Recall that even paths are those with an even number of edges.)

In the proof of the lemma, we will need a concept similar to that of an H-
bridge as introduced by Tutte (see, e.g., [1, Section 9.4]). A weak H-bridge of G
is any component B of G − E(H) containing at least one edge. The vertices of
B ∩H are called the attachment vertices of B.

Lemma 3. Let H be a connected subgraph of a 2-connected graph G such that
the following holds:

(i) all 1-extensions of H are even,

(ii) there is no even 2-extension of H.

Then for any k ≥ 1 and any extension of H with path sequence (P1, . . . , Pk), P1

is even and all the other paths Pi are odd.

Proof. Suppose H ′ = H ∪ P1 ∪ · · · ∪ Pk is a k-extension of H, and proceed by
induction on k. The case k ≤ 2 follows from the assumptions, so we assume
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that k > 2, and that the assertion holds for j-extensions of H with j < k. In
particular, each Pi (2 ≤ i < k) is odd, and therefore is not an H-path by condition
(i). Observe also that we may assume |H| ≥ 2, since otherwise there exists no
H-path and the statement is trivially true.

For the sake of a contradiction, suppose that Pk is an even (H∪P1∪· · ·∪Pk−1)-
path with at least one endvertex in P1 ∪ · · · ∪ Pk−1. We will find either an even
2-extension of H (contradicting (ii)), or an extension of H with a shorter path
sequence terminating with Pk (contradicting the induction hypothesis).

Let G/H be the multigraph obtained by contracting all the edges of H. Since
H is connected, the contraction merges all the vertices of H into one vertex ∗H .

Claim 1. The graph G/H is bipartite.

Suppose, for the sake of a contradiction, that C∗ is an odd cycle in G/H. If
∗H /∈ V (C∗), then C∗ is also a subgraph of G, and we can find two vertex-disjoint
paths, each joining a vertex of H to a vertex of C∗ and having no internal vertices
in H ∪C∗. Combining the paths with a suitable subpath of C∗, we obtain an odd
H-path, in violation of (i).

Thus, C∗ must contain ∗H . The subgraph of G corresponding to C∗ is either
a path or a cycle. If it is a path, then it is an odd H-path violating condition (i).
Hence, G contains an odd cycle C containing exactly one vertex u1 of H. Using
the 2-connectedness of G and the assumption that |H| ≥ 2, we can find a path
which joins a vertex u2 6= u1 of H to a vertex of C, and has no internal vertices
in H ∪C. The concatenation of this path with a suitable subpath of C is an odd
H-path, a contradiction. �

In view of Claim 1, we can let b∗ be a 2-colouring of the vertices of G/H which
is proper (adjacent vertices get different colours). Consider the corresponding 2-
colouring b of G−E(H) obtained by assigning each vertex w the colour b∗(w) if
w /∈ V (H) and b∗(∗H) otherwise.

Let B be the weak H ∪ P1-bridge of H ′ containing Pk. We let A denote the
set of attachment vertices of B which are contained in P1 (that is, A = B ∩ P1).
Furthermore, we let J ⊆ {2, . . . , k} be the set of indices i such that Pi is contained
in B. We write J = {i1, . . . , i`} with i1 < · · · < i` and note that i` = k.

Clearly, if ` = 1 (that is, if B = Pk), then Pk is odd as we would otherwise
obtain an even 2-extension of H. In the sequel, we will therefore assume that
` ≥ 2.

Claim 2. Any two vertices of A have different colours under b.

Let x, y ∈ A. Suppose that b(x) = b(y). Since B is connected, it contains
an xy-path P . As P is edge-disjoint from H, the colours of the vertices along P
alternate and hence P is even. Adding P to P1, we obtain an even 2-extension
of H, a contradiction with (ii). �

By Claim 2, A contains at most two vertices.
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Claim 3. The size of A is at most one.

For the sake of a contradiction, suppose that A = {x, y}. We have b(x) 6= b(y),
so if B∩H contains any other vertex z, then the colour of z matches that of x or
y, and consequently B contains either an even xz-path or an even yz-path. This
provides us again with an even 2-extension of H, contradicting (ii).

Thus, x and y are the only two attachment vertices of B. Necessarily, Pi1
is an xy-path. Let Q be the unique H-path obtained by concatenating Pi1 with
subpaths of P1. Note that for any j (2 ≤ j ≤ `) and any endvertex z of Pij with
z ∈ V (P1), we also have z ∈ V (Q). Therefore, H ∪Q∪B can be obtained as the
`-extension of H with path sequence

(Q,Pi2 , . . . , Pi`).

Since 2 ≤ ` ≤ k − 1, the induction hypothesis implies that the path Pi` is odd.
Furthermore (again since we assume that ` ≥ 2), Pi` coincides with Pk. This is a
contradiction with the assumption that Pk is even. �

We cannot have A = ∅, since at least one endvertex of Pi1 is required to lie
on P1 ∪ · · · ∪ Pi1−1 and thus (by the choice of i1) it must actually be contained
in P1.

Hence, A contains a single vertex, say A = {x}. The argument for this case is
similar to that in the proof of Claim 3. We note that one endvertex of Pi1 is x and
the other endvertex is in H. Let Q be an H-path obtained by concatenating Pi1
with a subpath R of P1; of the two possibilities for R, we choose one where the
endvertex of R in H is different from x. As before, if z ∈ V (Pij ∩P1) (2 ≤ j ≤ `),
then z ∈ V (Q). Consequently, H ∪ Q ∪ B is an `-extension of H with path
sequence

(Q,Pi2 , . . . , Pi`).

Again, we infer from the induction hypothesis that Pi` is odd, which contradicts
the assumption that Pk = Pi` is even.

3 Extending the colourings

Throughout this section, let H be a connected subgraph of a graph G, |H| ≥ 3,
and let c be a rainbow-connecting colouring of H. We introduce ‘standard’ ways
to extend c to an odd 1-extension of H and to an even 2-extension of H. In
this and the following section, the symbol γ will denote a fixed colour which is
assumed to be contained in im c. We make the assumption that |im c| ≥ 2.

Suppose first that P is an odd H-path, say of length 2k + 1. A continuation
of c to H ∪ P is any colouring c′ which agrees with c on H and assigns to the
edges of P , in some direction, the colours

a1, a2, . . . , ak, γ, a1, a2, . . . , ak,
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where the ai (1 ≤ i ≤ k) are some distinct colours not contained in im c. Thus,
a continuation of c to H ∪ P is not uniquely determined, but any two such
continuations are isomorphic in the obvious sense, so we may regard them as
identical. Note that c′ uses k colours not contained in im c, which is half the
number of vertices in V (P ) \ V (H).

Lemma 4. Let c be a safely rainbow-connecting colouring of H. If P is an H-path
of odd length, then any continuation of c to H ∪ P is safely rainbow-connecting.

Proof. Let c′ be a continuation of c to H ∪ P . Suppose that P is an H-path of
length 2k + 1 with endvertices u and v. We may assume that k ≥ 1 since the
statement is trivially true for k = 0.

To see that c′ is rainbow-connecting, we need to exhibit a rainbow xy-path
Rxy for each pair x, y ∈ V (H ∪ P ). If x, y ∈ V (H), we define Rxy as a rainbow
xy-path in (H, c) which exists by the assumption, and we choose a path which
is non-blocking under c if possible. Note that Rxy is rainbow and non-blocking
under c′.

From now on, we assume that x ∈ V (P ). Suppose first that y /∈ V (P ). Since
P is odd, the subpaths xPu, xPv are not of the same length; without loss of
generality, let xPu be the shorter one. Note that on xPu, c′ uses no colour from
im c. Thus, if we let Rxy = xPuRuyy (where Ruy has been defined above because
u ∈ V (H)), then Rxy is rainbow in H ∪ P .

Assume next that y ∈ V (P ). We may assume that y ∈ V (xPv). If xPy is
not rainbow, then it includes a pair of edges with the same colour, in which case
each colour used by c′ on P (including γ) must appear on xPy. But then c′ is
rainbow on uPx∪ vPy and uses no colour from im c. Thus, Rxy := xPuRuvvPy
is rainbow.

It remains to show that c′ is safe. Let x be a vertex of H ∪ P ; we show that
at most one vertex is blocked for x under c′. Since k > 1, we may choose a colour
ε 6= γ used by c′ on P .

Suppose that x ∈ V (H). Since ε is not used by c′ on H, no y ∈ V (H) is
blocked for x under c′. As for y ∈ V (P ), y will only be blocked if Rxy ∩ P
includes all the colours used by c′ on P , possibly except γ. This happens only
if y is incident with the central edge e of P . Let u′ and v′ be the endvertices of
e, where u′ is closer to u than to v. Note that the path Rxu′ contains Rxu as a
subpath, and similarly Rxv ⊆ Rxv′ . Since only one of u and v can be blocked for
x under c, we may assume that Rxu is not blocking under c. Therefore, Rxu′ is
not blocking under c′ since no colour from im c is used on the complementary
subpath uPu′ of Rxu′ . Hence, v′ is the only vertex which may be blocked for x
under c′.

The last case to consider is that both x and y are internal vertices of P . If
Rxy ⊆ P , then the only colour it uses from im c (if any) is γ. By the assumption
that |im c| ≥ 2 (made at the beginning of this section), Rxy is not blocking.
Thus, we may assume that Rxy = xPuRuvPy. There is only one vertex y for
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which xPu and vPy cover im c′ \ im c, namely the other vertex of P which is
incident with edges of the same colours as x. Thus, we have shown that c′ is safe,
and the proof is complete.

Next, we define a continuation of c to an even 2-extension H ∪Q ∪Q′ of H,
where the length of Q is 2` and the length of Q′ is 2`′. Suppose that the vertices
of Q are u0, . . . , u2` and the vertices of Q′ are u′0, . . . , u

′
2`′ . Let us write u = u0,

v = u2`, u
′ = u′0 and v′ = u′2`′ . We may assume that the distance of u′ from H

in H ∪ Q is greater than or equal to the distance of v′ from H. In particular,
u′ ∈ V (Q). We may also assume that u′ = uk with k ≤ `, and if u′ = u`, then
v′ ∈ V (u`Qv ∪H).

We colour the edges of Q, in order from u to v, by

a1, a2, . . . , a`−1, a`, γ, a1, a2, . . . , a`−1.

The edges of Q′, in order from u′ to v′, will be coloured by

a`+1, a`+2, . . . , a`+`′−1, γ, a`, a`+1, a`+2, . . . , a`+`′−1.

Here, ai (1 ≤ i ≤ `+`′−1) are again some distinct colours not contained in im c.
Any colouring c′ obtained in this way from c is said to be a continuation of c to
H ∪Q ∪Q′. Note that c′ uses ` + `′ − 1 colours not contained in im c, which is
half the number of vertices in V (Q ∪Q′) \ V (H).

Based on the position of the endvertex v′ of Q′ relative to Q, we distinguish
three possible types of the 2-extension H ∪Q∪Q′. As shown in Figure 1, we may
have v′ ∈ V (u′Qv) (Type I), v′ ∈ V (H) \ V (Q) (Type II) or v′ ∈ V (uQu′) (Type
III). Note that Types I and III include the possibility that v′ coincides with v or
u, respectively. Observe also that if u′ = u`, then the 2-extension is of Type I or
II.

Lemma 5. Let c be a safely rainbow-connecting colouring of H. If H ′ = H∪Q∪Q′
is an even 2-extension of H, then any continuation of c to H ′ is safely rainbow-
connecting.

Proof. Let c′ be a continuation of c to H ′. We use the same notation as in the
definition of c′. We define A as the set of colours used by c′ on H ∪Q.

First, we show that c′ is rainbow-connecting. Let x, y ∈ V (H ′). We are
looking for a rainbow xy-path Rxy. If x, y ∈ V (H ∪ Q), then the argument is
similar to that used in the proof of Lemma 4. For x, y ∈ V (H), Rxy is a rainbow
xy-path in (H, c). If x ∈ V (Q) and y ∈ V (H), then consider a γ-free subpath
of Q from x to a vertex w ∈ {u, v} and define Rxy = xQwRwyy (where Rwy has
been defined before as w ∈ V (H)). Finally, if both x and y are vertices of Q,
then we may assume that x ∈ V (uQv); the path Rxy is defined as xQy if this
path is rainbow, and xQuRuvvQy otherwise.
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u`

a` γ

u′ = uk

v′

H
u v

u′
`′

a`

Q

Q′
γ

(a) Type I.

u`

a` γ

u′ = uk

v′H
u v

u′
`′

a`

Q

Q′

γ

(b) Type II.

u`

a` γ

u′ = uk

v′

H
u v

u′
`′a`

Q

Q′

γ

(c) Type III.

Figure 1: The possible types of the 2-extension H ∪ Q ∪ Q′. Dashed and solid
lines represent paths and edges, respectively.
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For later use, note that in all the cases considered up to now, Rxy is either
a`-free or disjoint from H, with one exception, namely if x = u` and y ∈ V (H).

It remains to discuss the case that x or y is in Q′. By symmetry, we may
assume that x ∈ V (Q′).

Case 1. y ∈ V (Q′).

If the path xQ′y is not rainbow, then without loss of generality, we can write
x = u′i, y = u′j, where j ≥ i + `′ + 2. In particular, i ≤ `′ − 2 and j ≥ `′ + 2,
so c′ uses colours a`+1, . . . , a`+i on the path xQ′u′ and a subset of the colours
a`+i+2, . . . , a`+`′−1 on v′Q′y. It follows that the path xQ′u′Ru′v′v

′Q′y′ is rainbow.
�

Case 2. y ∈ V (H ∪Q) and x 6= u′`′.

If x 6= u′`′ , then there is an A-free path S from x to a vertex w of H ∪ Q (just
take a suitable subpath of Q′), and the path xSwRwyy is rainbow. �

We are left with the following last case:

Case 3. y ∈ V (H ∪Q) and x = u′`′.

The path xQ′u′Qu is rainbow as the colours from A used on it are, in the order
from x to u,

γ, a`′+`−1, a`′+`−2, . . . , a`+1, ak, ak−1, . . . , a1.

If y is contained in this path, then the appropriate subpath is a rainbow xy-
path. Similarly, if y ∈ V (ukQu`), then there is a rainbow xy-path as xQ′u′Qu` is
rainbow.

The path xQ′v′ is rainbow and c′ uses no colours from A on it except a`.
It follows that if y ∈ V (H), then we can append either v′QvRvyy (for Type I),
v′Rv′yy (for Type II) or v′QuRuyy (for Type III), and get a rainbow xy-path.

It remains to consider the case that y ∈ V (u`+1Qv). Observe that the fol-
lowing subgraphs are rainbow and A-free under c′: xQ′v′ ∪ u`+1Qv (Types I and
II) and xQ′v′Qu ∪ u`+1Qv (Type III). Adding the rainbow path Rv′v (Type II)
or Ruv (Type III) if necessary, we obtain a rainbow xy-path Rxy in each of the
cases. �

It remains to check that c′ is safe. Observe first that whenever the above-
defined path Rxy is either a`-free or edge-disjoint from H, then it is non-blocking
(in the latter case, this is because |im c| ≥ 2, and only one colour from im c is
used on Q ∪Q′ by c′).

By directly inspecting the above construction, we can readily check that the
following cases are (up to symmetry) the only ones where Rxy is neither a`-free
nor edge-disjoint from H:

(a) x = u` and y ∈ V (H),

(b) x = u′`′ and y ∈ V (H),
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(c) x = u′`′ , y ∈ V (u`+1Qv) and the 2-extension H ∪ Q ∪ Q′ is of Type II or
III.

We will now show that only at most one vertex is blocked for u`. If y is such
a vertex, then we are in case (a) above. By the construction, Rxy = xQuRuyy,
so Ruy must be blocking in (H, c). By the assumption that c is safe, there is at
most one such vertex y as claimed.

Next, we consider the vertex x = u′`′ . Suppose that some vertex y ∈ V (u`+1Qv)
is blocked for x (case (c)). Since the 2-extension must be of Type II or III, we
have y = u`+1, for otherwise the colour a1 is not used on Rxy. Furthermore, no
vertex y′ ∈ V (H) is blocked for y as a1 is not used on Rxy′ . Thus, u`+1 is the
only blocked vertex for u′`′ .

For this choice of x, it remains to consider the case that no vertex of u`+1Qv
is blocked for x. Suppose that y ∈ V (H) is blocked for x (case (b)). By the
construction, Rxy contains as a subpath the path Rvy (for Type I), Rv′y (Type II)
or Ruy (Type III). In addition, all the colours from im c are used on this subpath.
It follows that in (H, c), y is blocked for v, v′ or u depending on the type, so y is
uniquely determined since c is safe.

We have shown that for x ∈ {u`, u′`′}, there is at most one y which is blocked
for x. Considering the cases (a)–(c) above, c′ will be proved safe if we show that
no y ∈ V (H) is blocked for both u` and u′`′ . Suppose that y ∈ V (H) is blocked
for both of these vertices. Since Ru`y = u`QuRuyy, all the colours from im c must
be used on Ruy, so u is blocked for y in (H, c). By similarly considering Ru′

`′y
, we

find that for Type I or II, the vertex v or v′, respectively, would also be blocked
for y in (H, c), which is impossible as c is safe.

Hence, the 2-extension must be of Type III. In this case, as observed in the
definition of types, u′ 6= u` and hence v′ = ui with i ≤ ` − 2. Consequently,
the colour a`−1 is not used by c′ on Ru′

`′y
, contradicting the assumption that y is

blocked for u′`′ . The proof is complete.

4 Proof of Theorem 2

In this section, we prove Theorem 2. Let G be a 2-connected graph with n
vertices.

If G is an odd cycle of order n, then the colouring of its edges by

1, 2, . . . , bn/2c, dn/2e, 1, 2, . . . , bn/2c

is a rainbow colouring with dn/2e colours. Thus, we may assume that G is not
an odd cycle.

We claim that G contains an even cycle. If not, let Z be an odd cycle in G
(recall that G is 2-connected) and let v be a vertex not contained in Z. Taking two
internally disjoint paths from v to distinct vertices z1, z2 on Z and concatenating
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them with a z1z2-subpath of Z with the appropriate parity, we obtain an even
cycle, a contradiction.

Thus, let H0 be an even cycle in G, say of length 2k. We construct a subgraph
H∗ of G by means of a sequence H0, H1, . . . of subgraphs of G. To construct Hi+1

(i ≥ 0), we proceed as follows:

• if there is an odd Hi-path Pi, we set Hi+1 = Hi ∪ Pi (making an arbitrary
choice if there are more such paths),

• otherwise, if there is a 2-extension Hi ∪Qi ∪Q′i of Hi with both Qi and Q′i
even, we set Hi+1 = Hi ∪Qi ∪Q′i,

• if there is neither an odd Hi-path nor an even 2-extension of Hi, we stop
and set H∗ = Hi.

In the rest of this section, the symbol H∗ will denote the subgraph of G just
constructed. Observe that in the above sequence, each subgraph Hi has an even
number of vertices. Thus, |H∗| is even. The following proposition describes the
weak H∗-bridges.

Proposition 6. Let B be a weak H∗-bridge. Then the following holds:

(i) H∗ ∪ B is an extension of H∗ by a path sequence (P1, P2, . . . , P`), where
P1 is even and the other paths are odd,

(ii) |B| is odd.

Proof. (i) Let M be an inclusionwise maximal extension of H∗ contained in H∗∪
B. Choose a path sequence (Q1, . . . , Qs) for M . Note that by the construction
of H∗ and Lemma 3, Q1 must be even and all the other paths Qi must be odd.

We claim that M = H∗ ∪ B. Suppose that this is not the case and choose
a vertex w ∈ V (B) \ V (M). By the 2-connectedness of G, there are internally
disjoint paths R1, R2 from w to distinct vertices of M . The concatenation of R1

and R2 is an M -path of length at least 2 which can be added to M and provides
a contradiction with the maximality of M . This proves part (i).

Part (ii) is a direct consequence of (i).

On each Hi, we define a safely rainbow-connecting colouring ci by |Hi| /2
colours. We begin with a colouring c0 of the even cycle H0 with values

1, 2, . . . , k, 1, 2, . . . , k.

It is easy to check that this colouring is safely rainbow-connecting. Given ci, the
colouring ci+1 is constructed as a continuation to Hi ∪Pi or Hi ∪Qi ∪Q′i, respec-
tively. By Lemmas 4 and 5, we eventually obtain a safely rainbow-connecting
colouring c∗ of H∗. By the construction, c∗ uses |H∗| /2 colours.
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At this point, we fix two more ‘special’ colours in addition to γ, namely α and
β. The choice is such that neither α nor β is contained in im c∗.

Let u, v ∈ V (H∗) and let H be a subgraph of G such that H∗ ⊆ H. A
colouring b of H is grounded in (u, v) if b coincides with c∗ on H∗, and for each
vertex x ∈ V (H) \ V (H∗), both of the following conditions hold:

(A1) (H − E(H∗), b) contains either a rainbow αβγ-free path from x to H∗,
or both a rainbow βγ-free xu-path and a rainbow αγ-free xv-path,

(A2) for every vertex y ∈ V (H) \ V (H∗), there is a rainbow xy-path in H
which is either edge-disjoint from H∗, or β-free.

Note that the definition of a grounded colouring is always related to the same
subgraph H∗ of G defined above. If the pair (u, v) is not essential, then we just
say that b is grounded.

The following lemma shows that a continuation of a grounded colouring to an
odd 1-extension is grounded.

Lemma 7. Let u, v ∈ V (H∗) and let c be a colouring of H, H∗ ⊆ H ⊆ G, which
is grounded in (u, v). If P is an H-path of odd length, then any continuation of
c to H ∪ P is grounded in (u, v).

Proof. Let c′ be a continuation of c to H ∪P and let x be a vertex in V (H ∪P )\
V (H∗). It suffices to verify properties (A1) and (A2) for x ∈ V (P ) since for any
other x they follow from the assumption.

We begin with (A1). Let P ′ be the shorter of the two subpaths of P with one
endvertex x and the other endvertex in H. Let the latter endvertex be denoted by
w. Observe that P ′ is rainbow and αβγ-free in (H ∪P, c′). By the assumption on
c, (H, c) contains either a rainbow αβγ-free path R from w to a vertex z ∈ V (H),
or a βγ-free wu-path R1 and an αγ-free wv-path R2, both rainbow. In the former
case, the path xP ′wRz is rainbow and αβγ-free, because P ′ is αβγ-free and no
colour from im c is used on P ′. In the latter case, we similarly obtain paths with
the desired properties by prepending P ′ to R1 and R2, respectively.

To verify (A2), let y be a vertex in V (H ∪ P ) \ V (H∗). If y /∈ V (P ), then we
can utilise the path P ′ as above and concatenate it with a rainbow wy-path in
(H, c) satisfying (A2); the resulting xy-path satisfies (A2) as well, because P ′ is
βγ-free and edge-disjoint from H∗.

It remains to discuss the case that y ∈ V (P ). If xPy is rainbow, then we are
done as it is β-free. Otherwise, let the endvertices of P be denoted by x′ and
y′ in such a way that x ∈ V (x′Py). Observe that xPx′ ∪ yPy′ is rainbow and
αβγ-free.

If the vertices x′, y′ are not in H∗, then by the assumption that c is grounded,
a rainbow x′y′-path S in (H, c) is either edge-disjoint from H∗, or β-free. It
follows that the xy-path xPx′Sy′Py is edge-disjoint from H∗ or β-free as well.
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Since γ may be used on S, it is important that xPx′∪ yPy′ is γ-free. This makes
the xy-path rainbow.

We may therefore assume that y′ ∈ V (H∗). If x′ ∈ V (H∗), then since c∗ is
rainbow-connecting, there is a rainbow x′y′-path S1 in (H∗, c∗) which is β-free as
β /∈ im c∗. Consequently, the xy-path xPx′Sy′Py is rainbow and β-free.

Lastly, if x′ ∈ V (H) \ V (H∗) and y′ ∈ V (H∗), then by the assumption that c
is grounded, H − E(H∗) contains a rainbow βγ-free path S2 from x′ to a vertex
z ∈ V (H∗). Furthermore, there is a rainbow (necessarily β-free) zy′ path S3 in
(H∗, c∗). The path xPx′S2zS3y

′Py is then β-free and rainbow.

Let B1, . . . , Br be all the weak H∗-bridges in G. Fix j, 1 ≤ j ≤ r. We use
Proposition 6 to choose a path sequence (P j

1 , . . . , P
j
`j

) for H∗∪Bj. The only even

path in this sequence, P j
1 , will be called the base of Bj. We let the length of P j

i be
denoted by 2kji or 2kji + 1, according to whether it is even or odd. Furthermore,
the endvertices of the base of Bj will be denoted by uj and vj.

We now extend c∗ to a suitable colouring cj of H∗ ∪ Bj. We first colour the
base of Bj, in the direction from uj to vj, by

a1, a2, . . . , akj1−1
, α, β, a1, a2, . . . , akj1−1

,

where the ai (1 ≤ i ≤ kj1− 1) are distinct colours not contained in im c∗ ∪ {α, β}
nor used for the colouring of any other weak H∗-bridge. The colours α and β are
used for all the bases. Observe that the colouring is grounded in (uj, vj).

We extend the colouring to all of H∗∪Bj by successively taking continuations
to odd 1-extensions in the above path sequence for H∗ ∪ Bj (recall that all the
paths P j

i with i ≥ 2 are odd). By a repeated use of Lemmas 4 and 7, we obtain
a safely rainbow-connecting colouring cj which is grounded in (uj, vj). Let xj be
the number of colours used by cj on Bj −E(H∗). We compare xj to the number
of vertices in V (Bj) \ V (H∗). For 2 ≤ i ≤ `j, the path P j

i has length 2kji + 1,
and therefore 2kji internal vertices. The number of vertices in V (Bj) \ V (H∗) is
thus 2kj1 − 1 + 2kj2 + · · ·+ 2kj

`j
. On the other hand,

xj = kj1 + 1 +
`j∑
i=2

kji =
|V (Bj) \ V (H∗)|

2
+

3

2
. (1)

Since each cj extends c∗ and the weak H∗-bridges are pairwise edge-disjoint,
we can combine all the colourings cj, 1 ≤ j ≤ r, to a colouring c̃ of G. We assert
that (G, c̃) is rainbow-connected. To check this, it is enough to show that any
two vertices contained in different H∗-bridges are joined by a rainbow path. Let
us say that x ∈ V (B1)\V (H∗) and y ∈ V (B2)\V (H∗). By condition (A1) in the
definition of a grounded colouring, (H∗∪B1, c1) contains an αγ-free rainbow path
from x to a vertex w1 in H∗, and (H∗ ∪ B2, c2) contains a βγ-free rainbow path
from y to a vertex w2 in H∗. Since no colour from im c∗ is used on these paths
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by c̃, and each of α and β is used on at most one of them, we can concatenate
the paths with a rainbow w1w2-path in (H∗, c∗) and obtain a rainbow xy-path in
(G, c̃). This completes the proof that (G, c̃) is rainbow.

The number of colours used by c̃ can be obtained by using (1) and making a
correction to account for the fact that the same colours α, β are used in all Bj:

|im c̃| = |im c∗|+
( r∑
j=1

xj
)
− 2(r − 1)

=
|H∗|

2
+
( r∑
j=1

|V (Bj) \ V (H∗)|
2

)
− r

2
+ 2 =

|G|
2
− r

2
+ 2. (2)

Note that for r ≥ 3, we have |im c̃| ≤ d|G| /2e, which implies the statement in
Theorem 2. Similarly, if r = 0, then H∗ = G and we are done as well, because
(G, c∗) is then rainbow-connected and c∗ uses |G| /2 colours. Consequently, we
may assume that

1 ≤ r ≤ 2.

We will perform a simple recolouring to reduce the number of colours by one and
obtain a colouring satisfying the bound in Theorem 2.

The case r = 1 is simple. Since c̃ is grounded, every vertex in V (G) \ V (H∗)
is joined to H∗ by a βγ-free path. Thus, if we recolour the unique edge coloured
by β to a colour γ′ ∈ im c∗ \{γ}, G is still rainbow-connected with respect to the
resulting colouring. The number of colours used after this reduction is exactly
d|G| /2e.

It thus remains to consider the case r = 2. This case is the reason why we
need to restrict ourselves to safe colourings. For j = 1, 2, let ejα and ejβ denote

the edge of P j
1 coloured by α and β, respectively.

Since c∗ is safe, there is a rainbow path P from u1 to either u2 or v2, and a
colour δ ∈ im c∗ which is not used on P . (We allow δ = γ.) As the reversal
of the colouring on P 2

1 affects neither the rainbow-connectedness of G nor the
groundedness of the colouring, we may actually assume that the endvertices of
P are u1 and v2.

We recolour the edges e1β and e2β to δ, and we argue that with the resulting
colouring c̄, G is still rainbow-connected. Let x, y be vertices of G. Since no
rainbow paths inside H∗ are affected by the recolouring, we may assume that
x ∈ V (B1) \ V (H∗).

We distinguish several cases based on the location of y.

Case 1. y ∈ V (B1) \ V (H∗).

Since c1 is grounded, condition (A2) says that in (H∗ ∪B1, c1) there is a rainbow
xy-path which is either β-free, or edge-disjoint from H∗. In either case, the
colouring c̄ only uses the colour δ at most once on this path, which is therefore
rainbow. �
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Case 2. y ∈ V (H∗).

Since c1 is grounded, (B1, c1) contains a βγ-free rainbow path Q1 from x to a
vertex w ∈ V (H∗). If we let Q2 be a rainbow wy-path in (H∗, c∗), then xQ1wQ2y
is a rainbow xy-path. �

Case 3. y ∈ V (B2) \ V (H∗).

As c1 is grounded, there is a rainbow path R1 in (B1, c1) from y to a vertex
w1 ∈ V (H∗), where R1 is either αβγ-free, or it is βγ-free and w1 = u1.

As a first subcase, assume that R1 is αβγ-free, and choose a rainbow βγ-free
path R2 in (B2, c2) from y to a vertex w2 ∈ V (H∗) using condition (A1) in the
definition of a grounded colouring. Thus, R1 ∪ R2 is βγ-free with respect to c̃.
Since in (G, c̃), the sets of colours used to colour B1 and B2 are disjoint except
for α, β, γ, R1 ∪R2 is rainbow with respect to c̃.

Let R0 be a rainbow w1w2-path in (H∗, c∗), and define R = xR1w1Rw2R2y.
Since γ is not used by c̃ on R1 ∪ R2, R is rainbow in (G, c̃). Furthermore, it
remains rainbow after the recolouring of e1β and e2β to δ, since R1 ∪ R2 is β-free.
Thus, R is rainbow in (G, c̄).

A symmetric situation occurs when (B2, c2) contains an αβγ-free rainbow
path from y to H∗. We may therefore assume that R1 is a βγ-free xu1-path,
and choose an αγ-free rainbow yv2-path R′2 in (H∗ ∪B2, c2). Let P be the δ-free
rainbow u1v2-path in (H∗, c∗) defined above, and R′ = xR1u

1Pv2R′2y.
We claim that no colour is repeated on R′ in (G, c̄): α may only used on R1

as R′2 is α-free and α /∈ im c∗, γ is not used on R1 ∪R′2, and δ may only be used
on R′2, since P is δ-free and so is R1 (being chosen to be β-free with respect to
c1). This concludes the discussion of this case. �

We have just shown that (G, c̄) is rainbow-connected. As for |im c̄|, by elim-
inating the color β we decreased the value in (2) by one, and we get

|im c̄| = |G|
2
.

The proof of Theorem 2 is now complete.

5 Higher connectivity

In view of Theorem 2, it is natural to ask whether one can further improve
the bound for graphs of higher connectivity. The question on the relation be-
tween connectivity and the rainbow connection number was previously asked by
H. J. Broersma (cf. [10, Problem 2.22]). One estimate follows from a result of
Chandran et al. [4], improving a bound of Schiermeyer [12]:
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u v

Figure 2: A k-connected graph G with k(`−1)+2 vertices and rc(G) ≥ `. (Shown
for k = 3 and ` = 6.)

Theorem 8 ([4]). A connected graph G with n vertices and minimum degree
δ(G) has

rc(G) ≤ 3n

δ(G) + 1
+ 3.

Since the minimum degree of a graph is greater than or equal to its connec-
tivity, the theorem implies a bound for k-connected graphs.

We show that for every k, there are k-connected graphs G with n vertices and

rc(G) ≥ n− 2

k
+ 1.

For fixed k, `, let P be a path of length ` with endvertices u0 and v0, and let I be
a graph consisting of k independent vertices. Let G0 be the lexicographic product
of P and I. Thus, G0 has vertex set V (P )× V (I) and vertices (x, y) and (x′, y′)
are joined by an edge whenever x and x′ are adjacent in P . Let G be the graph
obtained from G0 by identifying all vertices of the form (u0, y) (y ∈ V (I)) into
one vertex u, and all vertices of the form (v0, y) (y ∈ V (I)) into another vertex
v. See Figure 2 for an illustration.

It is easy to see that G is k-connected and has n := k(` − 1) + 2 vertices.
Since shortest uv-paths have length `, we have

rc(G) ≥ ` =
n− 2

k
+ 1

as claimed above. We propose the following question:

Problem 9. Is there a constant C = C(k) such that every k-connected graph G
with n vertices satisfies

rc(G) ≤ n

k
+ C?

As remarked in Section 1, a positive answer to the above question was inde-
pendently conjectured in [9]. The same paper proves the conjecture for graphs of
high girth, and asymptotically improves the estimate obtained from Theorem 8
(for k-connected graphs of order n) to rc(G) ≤ (2 + ε)n/k+ 23/ε2, where ε is an
arbitrary real number in the interval (0, 1).
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