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Abstract

A graph G is 1-Hamilton-connected if G − x is Hamilton-connected for every ver-

tex x ∈ V (G). In the paper we introduce a closure concept for 1-Hamilton-

connectedness in claw-free graphs. If G is a (new) closure of a claw-free graph

G, then G is 1-Hamilton-connected if and only if G is 1-Hamilton-connected, G is

the line graph of a multigraph, and for some x ∈ V (G), G − x is the line graph

of a multigraph with at most two triangles or at most one double edge. As ap-

plications, we prove that Thomassen’s Conjecture (every 4-connected line graph is

hamiltonian) is equivalent to the statement that every 4-connected claw-free graph

is 1-Hamilton-connected, and we present results showing that every 5-connected

claw-free graph with minimum degree at least 6 is 1-Hamilton-connected and that

every 4-connected claw-free and hourglass-free graph is 1-Hamilton-connected.

1 Introduction

A well-known concept in Hamiltonian graph theory is the closure operation cl(G) for claw-

free graphs, introduced in [21]. The closure operation turns a claw-free graph into the

line graph of a triangle-free graph while preserving the hamiltonicity of the graph. While

cl(G) also preserves many weaker graph properties (such as traceability or the existence

of a 2-factor), stronger properties, such as Hamilton-connectedness, turn out not to be

preserved [4], [22]. The first attempt to develop a closure for Hamilton-connectedness was

by Brandt [3], the technique was further developed in [23] and [13]. In the present pa-

per, we further strengthen these techniques to the property of 1-Hamilton-connectedness

(where a graph G is k-Hamilton-connected if G−M is Hamilton-connected for any set of

vertices M ⊂ V (G) with |M | = k).
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The concept of k-Hamilton-connectedness was introduced already in 1970 by Lick [19],

and since then studied in many papers (see e.g. [16], [10]). The property of 1-Hamilton-

connectedness is closely related to a well-known conjecture by Thomassen [25] which

states that every 4-connected line graph is hamiltonian, since it was recently shown [12]

that Thomassen’s Conjecture is equivalent with the statement that every 4-connected line

graph is 1-Hamilton-connected. Having in mind that 4-connectedness is a necessary con-

dition for a graph to be 1-Hamilton-connected, it was observed in [12] that Thomassen’s

Conjecture, if true, would imply that a line graph is 1-Hamilton-connected if and only

if it is 4-connected, which means that 1-Hamilton-connectedness would be polynomial in

line graphs (and, as a corollary of our main result, also in claw-free graphs).

Note that Lai and Shao recently proved that, for s ≥ 5, a line graph G is s-hamiltonian

(i.e., G−X is hamiltonian for any X ⊂ V (G) with |X| = s), if and only if G is (s + 2)-

connected [15]. A similar result is also known to be true in planar graphs, where every

4-connected planar graph is 1-Hamilton-connected (an easy consequence of [24], page 342),

implying polynomiality of 1-Hamilton-connectedness. Also, there are results indicating

that Tutte cycles [26] seem to behave similarly in planar graphs and in claw-free graphs [6].

This potential connection to planar graphs is also one of the motivations of our research.

Also note that there are many further known equivalent versions of Thomassen’s Con-

jecture (see [5] for a survey on this topic).

In the present paper, we

• in Section 3, develop a closure concept for 1-Hamilton-connectedness in claw-free

graphs,

• in Section 4, show three applications of the closure: we prove that (i) Thomassen’s

Conjecture is equivalent with the statement that every 4-connected claw-free graph

is 1-Hamilton-connected, and we present results showing that (ii) every 5-connected

claw-free graph with minimum degree at least 6 is 1-Hamilton-connected, and (iii)

every 4-connected claw-free hourglass-free graph is 1-Hamilton-connected. The

last two results require nontrivial proofs and hence their proofs are published in a

separate paper [8].

We follow the most common graph-theoretical terminology and for concepts and notations

not defined here we refer e.g. to [2]. Specifically, by a graph we mean a finite undirected

graph G = (V (G), E(G)); in general, we allow a graph to have multiple edges. The precise

way of using (simple) graphs and multigraphs will be specified later in Section 2. Even

if not explicitly stated, we assume all graphs under consideration to be connected. We

use dG(x) to denote the degree of a vertex x, and we set Vi(G) = {x ∈ V (G)| dG(x) = i}.
The neighborhood of a vertex x, denoted NG(x), is the set of all neighbors of x, and we

define the closed neighborhood of x as NG[x] = NG(x) ∪ {x}. For a set M ⊂ V (G), ⟨M⟩G
denotes the induced subgraph on M , and for a graph F , G is said to be F -free if G does

not contain an induced subgraph isomorphic to F . Specifically, for F = K1,3 we say that

G is claw-free.
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If {x, y} ⊂ V (G) is a vertex-cut of G and G1, G2 are components of G− {x, y}; then
the subgraphs ⟨V (G1) ∪ {x, y}⟩G and ⟨V (G2) ∪ {x, y}⟩G are called the bicomponents (of

G at {x, y}).
For x ∈ V (G), G − x is the graph obtained from G by removing x and all edges

incident with x. If x, y ∈ V (G) are such that e = xy /∈ E(G), then G + e is the graph

with V (G+ e) = V (G) and E(G+ e) = E(G) ∪ {e}, and, conversely, for e = xy ∈ E(G)

we denote by G− e the graph with V (G− e) = V (G) and E(G− e) = E(G) \ {e}.
We use α(G) to denote the independence number of G, ν(G) to denote the matching

number of G (i.e., the size of a largest matching in G), and ω(G) stands for the number

of components of G. A complete subgraph K ⊂ G will be called a clique and, when no

confusion can arise, we will use K also for the vertex set of a clique (thus, for cliques K1,

K2, instead of V (K1) ∩ V (K2), we will simply write K1 ∩ K2). A vertex x ∈ V (G) is

simplicial if ⟨NG(x)⟩G is a clique, and an edge e ∈ E(G) is pendant if one of its vertices is

of degree 1.

A graph G is hamiltonian if G contains a hamiltonian cycle, i.e. a cycle of length

|V (G)|, and G is Hamilton-connected if, for any a, b ∈ V (G), G contains a hamiltonian

(a, b)-path, i.e., an (a, b)-path P with V (P ) = V (G). For k ≥ 1, G is k-Hamilton-connected

if G −X is Hamilton-connected for every set of vertices X ⊂ V (G) with |X| = k. Note

that a hamiltonian graph is necessarily 2-connected, a Hamilton-connected graph is 3-

connected and if G is k-Hamilton-connected, then G is (k + 3)-connected.

2 Preliminary results

In this section we summarize some background knowledge that will be needed for our

results.

The line graph of a graph (multigraph) H, denoted L(H), is the graph with E(H) as

its vertex set, in which two vertices are adjacent if and only if the corresponding edges

have a vertex in common. Recall that every line graph is claw-free.

It is well-known that if G is a line graph of a connected simple graph, then the graph

H such that G = L(H) (called the preimage of G) is uniquely determined, with one

exception, namely G = K3. However, for line graphs of multigraphs this is, in general,

not true – an easy example is the graph T1 in Fig. 1 which is the line graph of two

nonisomorphic graphs: the unique (simple) graph H1 with degree sequence 3, 2, 2, 1, and

the unique multigraph H2 with degree sequence 3, 3, 1, 1. This difficulty can be overcome

by imposing an additional requirement that simplicial vertices in the line graph correspond

to pendant edges.

Proposition A [23]. Let G be a connected line graph of a multigraph. Then there

is, up to isomorphism, a uniquely determined multigraph H such that G = L(H) and a

vertex e ∈ V (G) is simplicial in G if and only if the corresponding edge e ∈ E(H) is a

pendant edge in H.

For a line graph G, we will always consider its preimage to be the unique multigraph

with the properties given in Proposition A; this preimage will be denoted L−1(G). This
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means that, throughout the paper, when working with a claw-free graph or with a line

graph G, we always consider G to be a simple graph, while if G is a line graph, for its

preimage H = L−1(G) we always admit H to be a multigraph, i.e. we always allow H to

have multiple edges.

We will also use the notation e = L−1(a) and a = L(e) in situations whenH = L−1(G),

a ∈ V (G) and e ∈ E(H) is the edge of H corresponding to the vertex a. Note that

our special choice of the line graph preimage already implies some restrictions on its

structure: for example, it is not difficult to observe that H = L−1(G) can never contain

a triangle with two vertices of degree 2, for if ⟨{x1, x2, x3}⟩H is such a triangle with

dH(x1) = dH(x2) = 2, then L(x1x2) is a simplicial vertex in G, but x1x2 is not a pendant

edge in H (see the graphs H1 and G in the example prior to Proposition A). More

generally, if ⟨{x1, x2}⟩H is a multiedge in H = L−1(G), then both x1 and x2 must have a

neighbor outside the set {x1, x2}, and if ⟨{x1, x2, x3}⟩H is a triangle or a multitriangle (a

triangle with some multiple edges) in H, then at most one of the vertices x1, x2, x3 can

have no neighbor outside the set {x1, x2, x3} (for otherwise G contains a simplicial vertex

corresponding to a nonpendant edge of H).

We will need the following characterization of line graphs of multigraphs by Krausz [11].

Theorem B [11]. A graph G of order at least 1 is a line graph of a multigraph if and

only if V (G) can be covered by a system of cliques K such that every vertex of G is in

exactly two cliques of K and every edge of G is in at least one clique of K.

If G is a line graph and K = {K1, ..., Km} is a partition with the properties given in

Theorem B, then a graph H such that G = L(H) can be obtained from K as the intersec-

tion graph (multigraph) of the set system {V (K1), ..., V (Km)}, in which the number of

vertices shared by two cliques equals the multiplicity of the (multi)edge joining the corre-

sponding vertices of H. A system of cliques K = {K1, ..., Km} with the properties given

in Theorem B is called a Krausz partition of G, and its elements are called Krausz cliques.

Note that not every clique (and even not every maximal clique) in a line graph G has to

be a Krausz clique. If G = L(H), then such non-Krausz cliques in G can correspond to

(some of the) triangles, multiple edges or multitriangles.

In general, for a given line graph G, a Krausz partition is not uniquely determined, but

every such partition uniquely determines a graph H with the property G = L(H) as its

intersection graph. However, by Proposition A, every line graph G has a unique Krausz

partition K such that a vertex x ∈ V (G) is simplicial if and only if one of the two cliques

containing x is of order 1. Thus, whenever we will be working with Krausz cliques and

Krausz partitions, we will be always using this particular uniquely determined partition

(which gives the unique preimage L−1(G)).

Harary and Nash-Williams [7] showed that a line graph G of order at least 3 is hamil-

tonian if and only if H = L−1(G) contains a dominating closed trail, i.e. a closed trail

(eulerian subgraph) T such that every edge of H has at least one vertex on T . A similar

argument gives the following analogue for Hamilton-connectedness (see e.g. [17]). Here

an internally dominating trail (abbreviated IDT) is a trail T such that every edge in
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E(H) \ E(T ) has at least one vertex on T as its internal vertex, and, for e1, e2 ∈ E(H),

an (e1, e2)-IDT is an IDT having e1 and e2 as terminal edges.

Theorem C [17]. A line graph G of order at least 3 is Hamilton-connected if and only

if H = L−1(G) has an (e1, e2)-IDT for any pair of edges e1, e2 ∈ E(H).

An edge cut R of a graphH is essential ifH−R has at least two nontrivial components.

For an integer k > 0, H is essentially k-edge-connected if every essential edge cut R of G

contains at least k edges. Obviously, a line graph G = L(H) with α(G) ≥ 2 is k-connected

if and only if the graph H is essentially k-edge-connected.

A vertex x ∈ V (G) is locally connected (eligible), if ⟨N(x)⟩ is a connected (connected

noncomplete) subgraph of G, respectively. The set of all eligible vertices in G will be

denoted VEL(G).

For x ∈ V (G), the local completion of G at x is the graph G
∗
x = (V (G), E(G) ∪

{y1y2| y1, y2 ∈ NG(x)}), i.e. the graph obtained from G by turning ⟨NG(x)⟩G into a

clique. It is an easy observation that in the special case when G is a line graph and

H = L−1(G), a vertex x ∈ V (G) is locally connected if and only if the edge e = L−1
G (x) is

in a triangle or in a multiedge in H, and G
∗
x = L(H|e), where the graph H|e is obtained

from H by contraction of e into a vertex and replacing the created loop(s) by pendant

edge(s).

As shown in [21], if G is claw-free and x ∈ VEL(G), then G
∗
x is hamiltonian if and

only if G is hamiltonian. The closure cl(G) of a claw-free graph G is then defined [21]

as the graph obtained from G by recursively performing the local completion operation

at eligible vertices, as long as this is possible. We say that G is closed if G = cl(G).

It is well-known [21] that, for every claw-free graph G, (i) cl(G) is uniquely determined,

(ii) cl(G) is the line graph of a triangle-free graph, and (iii) cl(G) is hamiltonian if and

only if G is hamiltonian.

Recall that the closure operation cl(G) does not preserve the Hamilton-connectedness

of G [22], [4]. Thus, more generally, for k ≥ 1, we say that a vertex x is k-eligible if ⟨N(x)⟩
is k-connected noncomplete. The following fact was conjectured in [1] and proved in [22].

Proposition D [22]. If G is claw-free and x ∈ V (G) is 2-eligible, then G is Hamilton-

connected if and only if G∗
x is Hamilton-connected.

We will often use the following observation. Let T1, T2 be the graphs shown in Fig. 1

(the graph T1 will be referred to as the diamond). Let G = L(H), suppose that H contains

•

•

••

..................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

T1

e

•

•

•

..................................................................................................................

............................................................................................................................................................................

.....................................................................................................................................................

e

T2

Figure 1

a subgraph F isomorphic to T1 or T2 (in case of T2 such that at least one vertex incident
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with e has a neighbor outside F ), and set x = L(e). Then it is easy to see that x is

2-eligible in G and, consequently, by Proposition D, G = L(H) is Hamilton-connected if

and only if G∗
x = L(H|e) is Hamilton-connected (or, equivalently, H has an (f1, f2)-IDT

for any f1, f2 ∈ E(H) if and only if H|e has an (f1, f2)-IDT for any f1, f2 ∈ E(H|e)).

By recursively performing the local completion operation at k-eligible vertices, we can

define [1] the k-closure clk(G) of G, which is uniquely determined [1] and, if G is claw-free,

cl2(G) is Hamilton-connected if and only if so is G [22].

It can be easily seen that, in general, cl2(G) is not a line graph, and even not a

line graph of a multigraph. To overcome this drawback, the authors developed in [23]

the concept of the multigraph closure (or briefly M-closure) clM(G) of a graph G: the

graph clM(G) is obtained from cl2(G) by performing local completions at some (but not

all) 1-eligible vertices, where these vertices are chosen in a special way such that the

resulting graph is a line graph of a multigraph while still preserving the (non-)Hamilton-

connectedness of G. We do not give technical details of the construction since these will

not be needed for our proofs; we refer the interested reader to [22], [23].

The concept of M -closure was further strengthened in [13] in such a way that the

closure of a claw-free graph is the line graph of a multigraph with either at most two

triangles and no multiedge, or with at most one double edge and no triangle.

For a given claw-free graph G, we construct a graph GM by the following construction.

(i) If G is Hamilton-connected, we set GM = cl(G).

(ii) If G is not Hamilton-connected, we recursively perform the local completion oper-

ation at such eligible vertices for which the resulting graph is still not Hamilton-

connected, as long as this is possible. We obtain a sequence of graphs G1, . . . , Gk

such that

• G1 = G,

• Gi+1 = (Gi)
∗
xi

for some xi ∈ VEL(Gi), i = 1, . . . , k − 1,

• Gk has no hamiltonian (a, b)-path for some a, b ∈ V (Gk),

• for any x ∈ VEL(Gk), (Gk)
∗
x is Hamilton-connected,

and we set GM = Gk.

A graph GM obtained by the above construction will be called a strong M -closure (or

briefly an SM -closure) of the graph G, and a graph G equal to its SM -closure will be

said to be SM -closed.

The following theorem summarizes basic properties of the SM -closure operation.

Theorem E [13]. Let G be a claw-free graph and let GM be its SM -closure. Then

GM has the following properties:

(i) V (G) = V (GM) and E(G) ⊂ E(GM),

(ii) GM is obtained from G by a sequence of local completions at eligible vertices,

(iii) G is Hamilton-connected if and only if GM is Hamilton-connected,

(iv) if G is Hamilton-connected, then GM = cl(G),

(v) if G is not Hamilton-connected, then either

(α) VEL(G
M) = ∅ and GM = cl(G), or

(β) VEL(G
M) ̸= ∅ and (GM)

∗
x is Hamilton-connected for any x ∈ VEL(G

M),
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(vi) GM = L(H), where H contains either

(α) at most 2 triangles and no multiedge, or

(β) no triangle, at most one double edge and no other multiedge,

(vii) if G contains no hamiltonian (a, b)-path for some a, b ∈ V (G) and

(α) X is a triangle in H, then E(X) ∩ {L−1
GM (a), L−1

GM (b)} ≠ ∅,
(β) X is a multiedge in H, then E(X) = {L−1

GM (a), L−1
GM (b)}.

Note that in some cases (specifically, in cases (iv) and (v)(α) of Theorem E), we have

VEL(G
M) = ∅ and GM = cl(G), implying that GM is uniquely determined. However, if

VEL(G
M) ̸= ∅, then, for a given graph G, its SM -closure GM is in general not uniquely

determined and its construction requires knowledge of a pair of vertices a, b for which there

is no hamiltonian (a, b)-path in G. Consequently, there is not much hope to construct

GM in polynomial time (unless P=NP).

3 Closure for 1-Hamilton-connectedness

Let G be a claw-free graph and let x ∈ V (G) be such that G−x is not Hamilton-connected.

Let G̃x be a graph obtained by the following construction.

(1) Set G0 := G, i := 0.

(2) If there is a ui ∈ V (Gi − x) such that ui is eligible in Gi − x and (Gi)
∗
ui
− x is not

Hamilton-connected, then set Gi+1 = (Gi)
∗
ui

and go to (3),

otherwise set G̃x := Gi and stop.

(3) Set i := i+ 1 and go to (2).

Then we say that G̃x is a partial x-closure of the graph G.

The following proposition summarizes the main properties of a partial x-closure of a

claw-free graph. Here the 5-wheel, denoted W5, is the graph consisting of a 5-cycle C5

and a vertex (the center of the W5) adjacent to all vertices of the C5.

Proposition 1. Let G be a claw-free graph, let x ∈ V (G) be such that G − x is not

Hamilton-connected, and let G̃x be a partial x-closure of G. Then G̃x−x is an SM -closed

line graph and G̃x satisfies one of the following:

(i) G̃x is a line graph;

(ii) x is a center of an induced W5, and there are u1, u2 ∈ NG̃x
(x) such that

(α) {u1, u2} is a cut set of G̃x − x,

(β) one of the bicomponents of G̃x − x at {u1, u2} is isomorphic to K3 − e,

(γ) the graph (G̃x + {u1, u2})− x contains no induced W5 with center at x,

(δ) the graph (G̃x + {u1, u2})− x is SM -closed;

(iii) there are Krausz cliques Kx
1 , K

x
2 in G̃x − x such that

(α) NG̃x
(x) ⊂ Kx

1 ∪Kx
2 ,

(β) the graph (V (G̃x), E(G̃x) ∪ {xv| v ∈ Kx
1 ∪Kx

2 }) is a line graph.
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Proof of Proposition 1 is postponed to Section 5.

Note that if G is such that G̃x satisfies (ii) of Proposition 1, then the graph G̃x + uv

contains no inducedW5 with center at x, hence G̃x+uv satisfies (i) or (iii) of Proposition 1.

It is also easy to see that, in case (ii), {L−1(u1), L
−1(u2)} is a 2-element edge cut of

H = L−1(G̃x − x) separating a single edge from the rest of H.

Let now G be a claw-free graph, and let G be a graph obtained by the following

construction:

(1) If G is 1-Hamilton-connected, set G = cl(G).

(2) If G is not 1-Hamilton-connected, choose a vertex x ∈ V (G) such that G− x is not

Hamilton-connected and a partial x-closure G̃x of G.

(3) If G̃x satisfies (ii) of Proposition 1 (i.e., x is a center of an induced W5 in G̃x), choose

a cut set {u1, u2} of G̃x − x, add the edge u1u2 to G̃x (i.e., set G̃x := G̃x + u1u2),

and proceed to (4).

(4) If G̃x is a line graph, set G = G̃x.

Otherwise, G̃x satisfies (iii) of Proposition 1, i.e. some two Krausz cliques Kx
1 , K

x
2

in G̃x − x cover all vertices in NG(x), and then set G = (V (G̃x), E(G̃x) ∪ {xv| v ∈
(Kx

1 ∪Kx
2 )}).

Then we say that the resulting graph G is a 1HC-closure of the graph G.

The following result summarizes basic properties of a 1HC-closure of a graph G.

Theorem 2. Let G be a claw-free graph and let G be its 1HC-closure. Then

(i) G is a line graph,

(ii) for some x ∈ V (G), the graph G− x is SM -closed,

(iii) G is 1-Hamilton-connected if and only if G is 1-Hamilton-connected.

Proof. Properties (i) and (ii) follow immediately by the definition of G. Also clearly

G is 1-Hamilton-connected if so is G, and if G is not 1-Hamilton-connected, then neither

is G̃x (for some x ∈ V (G) which is used in the construction). It remains to show that

G is not 1-Hamilton-connected if G̃x is not. This is clear if G̃x satisfies (i) or (iii) of

Proposition 1. Finally, if G̃x satisfies (ii), then G is not 1-Hamilton-connected since

neither G̃x nor G is 4-connected.

Note that (ii) is equivalent to the statement that H = L−1(G) contains an edge

e ∈ E(H) such that L(H − e) is SM -closed.

Also note that, for a given claw-free graph G, its 1-Hamilton-connected closure is not

uniquely determined.

We finish this section with a result which shows that steps (3) and (4) in the defi-

nition of a 1HC-closure of a graph can be also accomplished by adding (some) edges in

neighborhoods of eligible vertices.
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Proposition 3. Let G be a claw-free graph. Then there is a sequence of graphs

G0, . . . , Gk such that

(i) G0 = G,

(ii) V (Gi) = V (Gi+1) and E(Gi) ⊂ E(Gi+1) ⊂ E((Gi)
∗
xi
) for some xi ∈ V (Gi) eligible

in Gi,

(iii) Gk is a 1HC-closure of G.

Proof. Steps (1) and (2) of the definition of a 1HC-closure clearly satisfy the conditions

of the proposition, and so does step (3), since the added edge has both vertices in NG(x)

and x is eligible. It remains to verify the statement in step (4). Suppose, to the contrary,

that, in step (4), for some Krausz clique Kx
i in G̃x − x, adding the edges joining Kx

i to x

does not satisfy the conditions.

If |Kx
i ∩ NG(x)| ≥ 2, then Kx

i and ⟨NG(x)⟩G̃x
share an edge, say, v1v2, but then v1

is eligible, a contradiction. Hence |Kx
i ∩ NG(x)| = 1. Let Kx

i ∩ NG(x) = {u}. By the

properties of the Krausz partition, u is, besides Kx
i , in some other Krausz clique Kx

j . If

⟨NG(x)⟩G̃x
is disconnected, then u is a simplicial vertex in G−x (otherwise u centers a claw

in G) and, since simplicial vertices in G−x correspond to pendant edges in H = L−1(G),

one of Kx
i , K

x
j (say, Kx

j ) is of size 1. But then, extending Kx
j to x adds no new edge

to G̃x.

Finally, if ⟨NG(x)⟩G̃x
is connected, then there is an edge e in ⟨NG(x)⟩G̃x

containing u,

and necessarily e is in Kx
j . But then, for the clique Kx

j , we have |Kx
j ∩ NG(x)| ≥ 2 and

we are in the previous case.

4 Applications of the closure

In this section we show three applications of the 1HC-closure, related to Thomassen’s

Conjecture. As already mentioned, there are many known equivalent versions of the

conjecture. As our first application, we show the following equivalence.

Theorem 4. The following statements are equivalent:

(i) Every 4-connected line graph is hamiltonian.

(ii) Every 4-connected claw-free graph is 1-Hamilton-connected.

Proof. Obviously, (ii) implies (i). Conversely, first recall that, by a recent result

[12], (i) is equivalent to the statement that every 4-connected line graph is 1-Hamilton-

connected. Thus, if G be a counterexample to (ii), then its 1HC-closure provides a

counterexample to (i).

Secondly, Kaiser and Vrána [9] proved that every 5-connected line graph with minimum

degree at least 6 is Hamilton-connected. Extending the argument of the proof of this

result, and applying the 1HC-closure, it is possible to obtain the following result.

Theorem 5. Every 5-connected claw-free graph with minimum degree at least 6 is

1-Hamilton-connected.

9



Finally, we mention here a theorem on hourglass-free graphs, which is a strengthening

of the main result of [18] and can be considered as another partial solution to the statement

(ii) of Theorem 4, i.e., equivalently, to Thomassen’s Conjecture. Here the hourglass is the

unique graph with degree sequence 4, 2, 2, 2, 2.

Theorem 6. Every 4-connected claw-free and hourglass-free graph is 1-Hamilton-

connected.

As already mentioned, the (nontrivial) proofs of Theorems 5 and 6 will be published

in a separate paper [8].

5 Proof of Proposition 1

For our proof we will need four lemmas describing subgraphs that cannot occur in the

preimage of an SM -closed graph.

Lemma 7. Let G be an SM -closed graph and let H = L−1(G). Then H does not

contain a triangle with a vertex of degree 2 in H.

For the proof of Lemma 7, we will need the following proposition from [4].

Proposition F [4]. Let x be an eligible vertex of a claw-free graph G, G
∗
x the local

completion of G at x, and a, b two distinct vertices of G. Then for every longest (a, b)-

path P ′(a, b) in G
∗
x there is a path P in G such that V (P ) = V (P ′) and P admits at

least one of a, b as an endvertex. Moreover, there is an (a, b)-path P (a, b) in G such that

V (P ) = V (P ′) except perhaps in each of the following two situations (up to symmetry

between a and b):

(i) There is an induced subgraph F ⊂ G isomorphic to the graph S in Fig. 2 such

that both a and x are vertices of degree 4 in F . In this case G contains a path Pb

such that b is an endvertex of P and V (Pb) = V (P ′). If, moreover, b ∈ V (F ), then

G contains also a path Pa with endvertex a and with V (Pa) = V (P ′).

(ii) x = a and ab ∈ E(G). In this case there is always both a path Pa in G with

endvertex a and with V (Pa) = V (P ′) and a path Pb in G with endvertex b and

with V (Pb) = V (P ′).
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S

Figure 2

Proof of Lemma 7. Let G be an SM -closed graph. If G is Hamilton-connected, the

lemma is obvious since H = L−1(G) is triangle-free by the definition of the SM -closure.

Thus, suppose that G is not Hamilton-connected. Let, to the contrary, T = ⟨{v1, v2, v2}⟩H
be a triangle in H with dH(v1) = 2, and set xi = L(vivi+1), i = 1, 2, 3 (indices mod 3).
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Observe that L−1(S) (where S is the graph in Fig. 2) is isomorphic to the net N , i.e.

the graph obtained by attaching a pendant edge to each vertex of a triangle. Since

dH(v1) = 2, T is not contained in a copy of N , hence the triangle L(T ) = ⟨{x1, x2, x3}⟩G
is not contained in an induced subgraph of G = L(H) isomorphic to S = L(N).

Since the edge L−1(x2) = v2v3 is in the triangle T , and T cannot have two vertices of

degree 2 by the definition of the preimage L−1, x2 is eligible in G and, by the definition

of the SM -closure, G∗
x2

is not Hamilton-connected, i.e., there is no hamiltonian (a, b)-

path in G∗
x2

for some a, b ∈ V (G) for which there is no hamiltonian (a, b)-path in G. By

Proposition F(ii), for every such hamiltonian (a, b)-path in G∗
x2
, one of a, b is x2 (say,

a = x2), and b ∈ N(x2).

Now, x1 is also eligible in G, and since NG(x1) ⊂ NG(x2) (this follows easily from

dh(v1) = 2), also G∗
x1

⊂ G∗
x2
, hence every hamiltonian path in G∗

x1
is also a hamiltonian

path in G∗
x2
. We already know that every such (a, b)-path satisfies a = x1, and, applying

Proposition F(ii) to x1, we have b = x1.

Thus, we conclude that the only possible vertices for which there is a hamiltonian

path in G∗
x2

but not in G are the vertices x1 and x2. However, x3 is also eligible in G and

NG(x3) ⊂ NG(x2), thus, by a symmetric argument, we obtain the same conclusion for x3

and x2, a contradiction.

In the proof of the next three lemmas we will need the following slight extension of a

technical lemma from [13].

For a graph H, u ∈ V (H) with dH(u) = 2 and NH(u) = {v1, v2}, H|(u) denotes the

graph obtained from H by suppressing the vertex u (i.e., by replacing the path v1uv2 by

the edge v1v2) and by adding one pendant edge to each of v1 and v2.

Lemma G [13]. Let H be a graph and u ∈ V (H) of degree 2 with NH(u) = {v1, v2}
and hi = uvi, i = 1, 2. Set H ′ = H|(u), h = v1v2 ∈ E(H ′), and let f1, f2 ∈ E(H ′) \ E(H)

be the two pendant edges attached to v1 and v2, respectively.

(i) If L(H) is Hamilton-connected, thenH ′ has an (e1, e2)-IDT for every e1, e2 ∈ E(H ′)

such that either

(α) h /∈ {e1, e2}, or
(β) h ∈ {e1, e2} and {e1, e2} ∩ {f1, f2} ̸= ∅.

(ii) If L(H ′) is Hamilton-connected, then H has an (e1, e2)-IDT for every e1, e2 ∈ E(H)

such that {e1, e2} ̸= {h1, h2}.
(iii) If moreover H contains a pendant edge attached to v1 and H has an (h1, e)-IDT

for every e ∈ E(H), then H ′ has an (h, e′)-IDT for every e′ ∈ E(H ′)

Proof. Parts (i) and (ii) are a reformulation of Lemma 3 from [13]. We prove (iii).

Thus, for any e′ ∈ E(H ′), we construct an (h, e′)-IDT in H ′. Let f denote the pendant

edge at v1 in H. If e′ ∈ {f, f1, f2}, then, for any (h1, h2)-IDT in H, an appropriate

replacement of h1 and h2 with h and e′ gives the desired (h, e′)-IDT in H ′. Thus, let

e′ /∈ {f, f1, f2}. Let e ∈ E(H) be the edge corresponding to e′, and let T be an (h1, e)-

IDT in H. If h2 ∈ E(T ), then necessarily v1 ∈ V (T ) (otherwise f is not dominated),

and then T ′ obtained from T by replacing h1, h2 with h is an (h, e′)-IDT in H ′. Similarly,
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if h2 /∈ E(T ), then necessarily v2 ∈ V (T ) (otherwise h2 is not dominated), and then T ′

obtained from T by replacing h1 with h is a desired (h, e′)-IDT in H ′.

Lemma 8. Let G be an SM -closed graph and let H = L−1(G). Then H does not

contain a subgraph H isomorphic to a cycle C5 with a vertex of degree 2 in H and with

a chord.

Proof. If G is Hamilton-connected, the lemma is obvious. Thus, suppose that G is

not Hamilton-connected and let, to the contrary, H ⊂ H be a graph consisting of a

cycle C = v1v2v3v4v5v1 with a chord e, and choose the notation such that dH(v4) = 2.

If e = v3v5, we have a contradiction with Lemma 7, hence without loss of generality

suppose that e = v2v5. First observe that e is the only chord of C in H, for otherwise

H contains a diamond, a contradiction. Denote vivi+1 = hi+1, i = 1, . . . , 5 (indices mod

5) and set H1 = H|(v4). Then L(H1) is not Hamilton-connected by Lemma G(ii). It is

straightforward to see that in L(H1), the neighborhood of the vertex L(e) is 2-connected.

By Proposition D, the graph (L(H1))
∗
L(e) = L(H1|e) is not Hamilton-connected. Set

H2 = H1|e (denoting v2 the vertex obtained by merging v2, v5 ∈ V (H1)). Now, the

subgraph of H2 corresponding to H ⊂ H consists of three vertices v1, v2, v3, a double edge

h1, h2 joining v1 and v2, a double edge h3, h4 joining v1 and v2, two pendant edges at v2
and one pendant edge at v3.

Now we return back the suppressed vertex v4: let H3 be the graph obtained from

H2 by subdividing the edge h4 with a vertex v4 (denoting h5 = v4v2) and removing

a pendant edge from each of v2, v3. If L(H3) is Hamilton-connected, then H2 has, for

e1, e2 ∈ E(H2), an (e1, e2)-IDT for e1, e2 ̸= h4 by Lemma G(i), and for h4 ∈ {e1, e2}
by Lemma G(iii), hence L(H2) is Hamilton-connected, a contradiction. Thus, L(H3) is

not Hamilton-connected. But H3 can be alternatively obtained from H by contracting

the chord e, i.e., H3 = H|e, or, equivalently, L(H3) = G∗
L(e). As L(H3) is not Hamilton-

connected and L(e) is eligible in G (since e is in a triangle in H), we have a contradiction

with the fact that G is SM -closed.

Lemma 9. Let G be an SM -closed graph and let H = L−1(G). Then H does not

contain a cycle C of length 5 such that some two vertices of C are of degree 2 in H and

some edge of C is in a double edge or in a triangle in H.

Proof. If G is Hamilton-connected, the lemma is obvious. Thus, suppose that G is

not Hamilton-connected, let C = v1v2v3v3v5v1 ⊂ H and let vj, vk, j < k, be of degree 2

in H. Set vivi+1 = hi+1, i = 1, . . . , 5 (indices mod 5).

Suppose first that vj, vk are consecutive on C, say, j = 1, k = 2. Then R = {h1, h2} is

an essential edge-cut separating h2 from the rest of H. By the assumptions, some of h4,

h5 (say, h4), is in a triangle or in a double edge, implying L(h4) is eligible in G. But R is

an essential edge-cut also in H|h4 = L−1(G∗
L(h4)

), hence G∗
L(h4)

is not Hamilton-connected,

contradicting the definition of SM -closure. Thus, vj, vk are not consecutive on C.
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Choose the notation such that j = 3 and k = 5, i.e., dH(v3) = dH(v5) = 2. Then the

only possible chords of C are the edges v1v4 and v2v4, but if some of them is present, we

have a contradiction with Lemma 7. Thus, C is chordless. This implies that either

(i) h2 is in a double edge, or

(ii) h2 is in a triangle T = v1v2z with z ∈ V (H) \ V (C).

In case (i), we use h′
2 to denote the edge parallel with h2 and H to denote the graph with

V (H) = V (C) and E(H) = E(C) ∪ {h′
2}; in case (ii) we set h′

2 = zv1, h
′′
2 = zv2, V (H) =

V (C)∪{z} and E(H) = E(C)∪{h′
2, h

′′
2}. Recall that in both cases dH(v3) = dH(v5) = 2.

By the properties of the SM -closure, for each pair e, fE(H), for which there is no

(e, f)-IDT in H, we have {e, f} = {h2, h
′
2} in case (i), or {e, f} ∩ {h2, h

′
2, h

′′
2} in case (ii),

respectively. Thus, by Lemma G(ii), for the graphH1 = H|(v5) (in which we denote v1v4 =

h1), L(H1) is not Hamilton-connected. Similarly, the graph L(H2), where H2 = H1|(v3)
(in which we set v2v4 = h3) is also not Hamilton-connected. But now ⟨{v1, v2, v4}⟩H2

is a triangle with a double edge h2, h
′
2 in case (i), or ⟨{v1, v2, v4, z}⟩H2 is a diamond in

case (ii). In both cases, it is straightforward to verify that, in L(H2), the neighborhood

of the vertex x2 = L(h2) is 2-connected. Thus, setting H3 = H2|h2 , we obviously have

L(H3) = (L(H2))
∗
x2

and, by Proposition D, L(H3) is also not Hamilton-connected. Note

that in H3 the subgraph corresponding to H consists of: in case (i) two vertices v1, v4
joined by h1 and h3, 4 pendant edges at v1 and 2 pendant edges at v4, or in case (ii) three

vertices z, v1, v4, where z, v1 are joined by h′
2, h

′′
2 and v1, v4 are joined by h1, h3, and there

are 3 pendant edges at v1 and 2 pendant edges at v4.

Now we return back the suppressed vertices of degree 2: H4 is obtained from H3 by

subdividing h3 with v3 (denoting v3v4 = h4) and removing a pendant edge from each of

v1, v4, and, similarly, H5 is obtained from H4 by subdividing h1 with v5 (denoting v4v5 =

h5), and removing a pendant edge from each of v1, v4. If L(H4) is Hamilton-connected,

then H3 has, for e, f ∈ E(H3), an (e, f)-IDT for e, f ̸= h34 by Lemma G(i), and for

h3 ∈ {e, f} by Lemma G(iii), hence L(H3) is Hamilton-connected, a contradiction. Thus,

L(H4) is not Hamilton-connected. By a similar argument, L(H5) is also not Hamilton-

connected. But now we observe that H5 = H|h2 , or, equivalently, L(H5) = G∗
x2
. As h2 is

in a double edge or in a triangle, x2 is eligible in G and we have a contradiction with the

fact that G is SM -closed.

Lemma 10. Let G be an SM -closed graph, let H = L−1(G) and let F be the graph

with V (F ) = {v1, v2, v3, v4, v5, z} and E(F ) = {v1v2, v2v3, v3v4, v4v5, v5v1, v3v5, zv1, zv2}
(see Fig. 3). Then H does not contain a subgraph H isomorphic to the graph F such that

NH({v1, v2, v3, v5}) ⊂ V (H).

Proof. If G is Hamilton-connected, the lemma is obvious. Thus, suppose that G is

not Hamilton-connected and let H be a subgraph of H with the properties given in the

lemma. Let h1, . . . , h8 denote the edges of H as shown in Fig. 3 and denote T1 = v1v2zv1
and T2 = v3v4v5v3 the two triangles in H. Observe that H contains no multiple edge since

H already contains two triangles, and that neither of the vertices v1, v2, v3, v5 can have

another neighbor in H for otherwise H contains a diamond, a contradiction. Thus, H is

either induced, or ⟨V (H)⟩H = H+zv4. Moreover, if zv4 /∈ E(H), then, by the connectivity

13



•

•

•

•

••

.............................................................................................................................................
............

............
............

............
............

............
............

............
.............
............
............
............
............
............
............
............
............
............
.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.................................................................................................................................

h1

h3

h5

h4

h7

h8

h2 h6

v1

v2

v5

v3

v4z

F

Figure 3

assumption, the graph H−{v1, v2, v3, v5} contains a (z, v4)-path (since otherwise {h1, h3}
is an essential edge-cut of size 2 in H). Specifically, we have dH(z) ≥ 3 and dH(v4) ≥ 3.

Since h2 is in a triangle, x2 = L(h2) is eligible in G, implying G∗
x2

= L(H|h2) is

Hamilton-connected since G is SM -closed. Thus, the graph H1 = H|h2 has an (e1, e2)-

IDT for any e1, e2 ∈ E(H1). We will show that H has an (f1, f2)-IDT for any f1 ∈ E(T1)

and f2 ∈ E(T2), contradicting the fact that G = L(H) is SM -closed.

Thus, choose any e1, e2 ∈ E(H1), let T
′ be an (e1, e2)-IDT in H1 and let T be the part

of T ′ that is outside H|h2 (in the special case when V (H) dominates all edges of H and

T ′ ⊂ H|h2 , necessarily zv4 ∈ E(H) or zw,wv4 ∈ E(H) for some w ∈ V (H) \ V (H), and

we choose T = zv4 or T = zwv4, respectively).

Then T is also a trail in H −H, with initial and terminal edges incident to z and/or

v4 and dominating all edges in H −H. We distinguish two possibilities:

(α) both dT (z) and dT (v4) is odd,

(β) both dT (z) and dT (v4) is even (possibly zero).

In the case (β), only one of dT (z), dT (v4) can be zero and, by symmetry, we choose the

notation such that dT (z) ̸= 0. Up to a symmetry, we have the following possibilities for

f1 ∈ E(T1) and f2 ∈ E(T2). In each of them, we find an (f1, f2)-IDT in H for both

possibilities (α) and (β).

An (f1, f2)-IDT for the possibility

Case f1 f2 (α) (β)

1 h7 h5 zv1v2zTv4v3v5v4 v1zTzv2v1v5v3v4v5
2 h7 h4 zv1v2zTv4v5v3v4 v1zTzv2v1v5v4v3
3 h7 h6 zv1v2zTv4v3v5 v1zTzv2v1v5v4v3v5
4 h2 h4 Symmetric to 3(α) v2v1zTzv2v3v5v4v3
5 h2 h6 v2v1zTv4v3v5 v2v1zTzv2v3v4v5v3

Proof of Proposition 1. Let G0 be a claw-free graph and x ∈ V (G0) such that G0 − x

is not Hamilton-connected, and let (G̃0)x be a partial x-closure of G0. In the rest of the

proof, we will simply denote G := (G̃0)x.

Immediately by the construction of G, G is claw-free and G− x is SM -closed. Thus,

it remains to show that G satisfies (i), (ii) or (iii).

We introduce the following notation:

NG(x) = {x1, . . . , xd} (i.e., dG(x) = d),

K – Krausz partition of G− x,
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K ′
1, . . . , K

′
k – all cliques in K with K ′

i ∩NG(x) ̸= ∅, i = 1, . . . , k,

H ′ = L−1(G− x),

K ′′
i = K ′

i ∩NG(x), i = 1, . . . , k.

The cliques K ′′
1 , . . . , K

′′
k ⊂ ⟨NG(x)⟩G satisfy the conditions of Theorem B (applied on

⟨NG(x)⟩G), and we use H to denote the intersection graph of the system {K ′′
1 , . . . , K

′′
k}.

Then we have H ⊂ H ′ and L(H) = ⟨NG(x)⟩G. However, note that not necessarily

H = L−1(⟨NG(x)⟩G) (since the graph H can be another “preimage” of ⟨NG(x)⟩G, see e.g.
the example prior to Proposition A.

Using the correspondence between a line graph and its preimage, we will identify

Krausz cliques in G − x with the vertices of H ′ (the centers of the stars in H ′ that

correspond to the cliques in K). Thus, {K ′
1, . . . , K

′
k} ⊂ V (H ′) and {K ′′

1 , . . . , K
′′
k} = V (H).

Note that if NG(x) can be covered by two Krausz cliques, then at most two cliques

from K have at least two vertices in NG(x) (hence at least one edge in ⟨NG(x)⟩G), and
extending these cliques to x we get a Krausz partition of G. Thus, to show that G satisfies

(iii), it is sufficient to show that NG(x) can be covered by two Krausz cliques.

Suppose first that ⟨NG(x)⟩G is disconnected, and let F1, F2 be its components. Then

both F1 and F2 are cliques since G is claw-free. If F1, F2 are subcliques of Krausz cliques

in G − x, we are done; so, suppose that, say, F1 is not. Then, as noted in Section 2,

L−1(F1) is a (multi)triangle or a multiedge in H ′ = L−1(G−x); since G−x is SM -closed,

L−1(F1) is a triangle or a double edge.

If L−1(F1) is a double edge, then L−1(F1) = ⟨{K ′
a, K

′
b}⟩H for some a, b ∈ {1, . . . , k},

and since F1 is a clique, one of K ′
a, K

′
b, say, K

′
b, has no neighbor w with L(K ′

bw) ∈ NG(x),

but then F1 is a subclique of K ′
a ∈ K, a contradiction. So, suppose that L−1(F1) is a

triangle, set L−1(F1) = ⟨{K ′
a, K

′
b, K

′
c}⟩H (where a, b, c ∈ {1, . . . , k}), and let z ∈ V (F2)

be arbitrary. By the properties of the preimage L−1 (see Section 2), at least two of the

vertices K ′
a, K

′
b, K

′
c have a neighbor outside {K ′

a, K
′
b, K

′
c}. Let, say, K ′

aw1, K
′
bw2 ∈ E(H ′),

where w1, w2 ∈ V (H ′) \ {K ′
a, K

′
b, K

′
c}. Then w1 ̸= w2 (otherwise H ′ contains a diamond),

both L(K ′
aw1) /∈ NG(x) and L(K ′

bw2) /∈ NG(x) (for if e.g. L(K ′
aw1) ∈ NG(x), then

⟨{x, L(K ′
aw1), L(K

′
bK

′
c), z}⟩G is a claw), but then ⟨{L(K ′

aK
′
b), L(K

′
aw1), L(K

′
bw2), z}⟩G is

a claw, a contradiction again.

Thus, we can suppose that ⟨NG(x)⟩G (and therefore also H) is connected.

Claim 1. If H contains a triangle and does not contain a C5, then L(H) = ⟨NG(x)⟩G
can be covered by two Krausz cliques.

Proof. Let, say, T = ⟨{K ′
1, K

′
2, K

′
3}⟩H be a triangle in H and denote h1 = K ′

1K
′
3,

h2 = K ′
1K

′
2, h3 = K ′

2K
′
3. By Lemma 7, dH′(K ′

i) ≥ 3, i = 1, 2, 3. Let ei ∈ E(H ′) \ E(T )

be an edge incident to K ′
i, and set yi = L(ei) and xi = L(hi), i = 1, 2, 3. Since H ′ does

not contain a diamond, the edges e1, e2, e3 have no vertex in common, i.e., {e1, e2, e3} is

a matching in H ′. Hence the vertices y1, y2, y3 are independent in G− x.

Now, if all yi, i = 1.2.3, are in NG(x), then ⟨{x, y1, y2, y3}⟩G is a claw in G, and

if, say, y1, y2 ∈ V (G) \ NG(x), then ⟨{x2, y1, y2, x}⟩G is a claw in G, a contradiction.

Hence exactly two xi’s are in NG(x). Choose the notation such that x1, x2 ∈ NG(x) and

x3 ∈ V (G) \NG(x). Then, since the edge e3 was chosen arbitrarily, we have dH(K
′
3) = 2.

15



If all other edges of H are incident to K ′
1 or K ′

2, then E(H) can be covered by two

stars centered at K ′
1, K

′
2, hence ⟨NG(x)⟩G can be covered by two cliques and we are done.

Hence suppose that there is an f ∈ E(H) that is incident to none of K ′
1, K

′
2, K

′
3. since

H is connected, we can choose f such that f has a common vertex with, say, e1. Set

L(f) = z.

But now, if f has a common vertex with e2, then e1, h1, h3, e2, f determine a C5 in H,

contradicting the assumption, and if f does not share a vertex with e2, then {f, h1, e2} is

a matching in H, implying ⟨{x, z, x1, y2}⟩G is a claw in G, a contradiction again. �

We now distinguish two cases.

Case 1: ⟨NG(x)⟩G does not contain an induced cycle of length 5.

Then, equivalently, H does not contain a cycle C5 (not necessarily induced).

First observe that α(⟨NG(x)⟩G) = ν(H) ≤ 2, for otherwise x is a center of an induced

claw in G, This immediately implies that H does not contain a cycle Cℓ of length ℓ ≥ 6,

since such a cycle contains a matching of size 3. If H contains a triangle, then ⟨NG(x)⟩G
can be covered by two cliques by Claim 1 and we are done. Thus, the only possible cycles

in H are of length 4.

Let C = x1x2x3x4x1 be a cycle of length 4 inH. SinceH is triangle-free, C is chordless.

If V (H) = V (C), then H can be covered by two stars (hence ⟨NG(x)⟩G can be covered by

two cliques) and we are done; if H contains an edge e = uv with {u, v} ∩ V (C) = ∅, then
e together with two edges from E(C) form a matching of size 3 in H, a contradiction.

Hence every edge in E(H) \ E(C) has exactly one vertex in V (C).

Now, if some two consecutive vertices of C have a neighbor outside C, say, x1y1 ∈ E(H)

and x2y2 ∈ E(H) for some y1, y2 ∈ V (H) \ V (C), then y1 ̸= y2 (since H is triangle-free)

and {x1y1, x2y2, x3x4} is a matching in H, a contradiction. Hence all edges in E(H)\E(C)

are incident to some pair of nonconsecutive vertices of C, implying H can be covered by

two stars.

Thus, it remains to consider the case when H is a tree. Let D = {d1, . . . , dγ} be a

minimum dominating set in H. By the minimality of D, for every i, 1 ≤ i ≤ γ, there

is a vertex wi ∈ V (H) \ D such that di is the only neighbor of wi in D. If γ ≥ 3, then

{d1w1, d2w2, d3w3} is a matching in H, hence γ ≤ 2, implying {d1} (if γ = 1) or {d1, d2}
(if γ = 2) are centers of stars covering all edges of H.

Case 2: ⟨NG(x)⟩G contains an induced cycle of length 5.

Let C be an induced cycle of length 5 in ⟨NG(x)⟩G. Then L−1(C) is a C5 (not necessarily

induced) in H. If k ≥ 6, then there is an edge e ∈ E(H) \ E(C) with at least one vertex

outside C, but then e together with two edges of C form a matching of size 3 in H, a

contradiction. Hence k = 5 and NG(x) = V (C).

We choose the notation such that C = x1x2x3x4x5x1 and xixi+1 ∈ E(K ′
i) (i.e.,

xi+1 ∈ K ′
i ∩ K ′

i+1), i = 1, . . . , 5 (indices mod 5). Then CH = K ′
1K

′
2K

′
3K

′
4K

′
5K

′
1 is the

corresponding 5-cycle in H ′ = L−1(G − x), and we denote its edges hi = L−1(xi) (i.e.,

hi+1 = K ′
iK

′
i+1), i = 1, . . . , 5 (indices mod 5).

Claim 2. For any y ∈ NG(x), y ∈ K ′′
i ∩K ′′

j for some i, j = 1, . . . , 5, i ̸= j.
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Proof. If e.g. y ∈ K ′′
1 \ (∪5

i=2K
′′
i ) for some y ∈ NG(x), then y ∈ K ′ for some other

K ′ ∈ K (since every vertex is in 2 Krausz cliques), implying k ≥ 6, a contradiction. �

We introduce the following notation:

Kx = {K ′
1, . . . , K

′
5},

Kx = ∪5
i=1K

′
i,

R = V (G) \ ({x} ∪Kx),

KR = K \ Kx,

I(K ′
i) = K ′

i \ (∪j∈({1,...,5}\{i})K
′
j), i = 1, . . . , 5.

The vertices in I(K ′
i) will be referred to as the internal vertices of the clique K ′

i. Note

that, by Claim 2, I(K ′
i) ∩NG(x) = ∅, i = 1, . . . , 5.

Claim 3. If y ∈ Kx has a neighbor in R, then y ∈ I(K ′
i) for some i = 1, . . . , 5.

Proof. By the properties of the Krausz cliques and by Claim 2, only vertices in I(K ′
i)

can have a neighbor in R, since if a vertex y ∈ K ′
i ∩ K ′

j (for some i, j ∈ i, . . . , 5) has a

neighbor in R, then y is in three Krausz cliques, a contradiction. �

Claim 4. If y1 ∈ I(K ′
i) and y2 ∈ I(K ′

i+1) for some i = 1, . . . , 5, then

(i) y1y2 ∈ E(G),

(ii) y1y2 ∈ E(⟨K⟩G) for some K ∈ KR,

(iii) ⟨{K ′
i, K

′
i+1, K}⟩G is a traingle in H ′ = L−1(G− x),

(iv) |I(K ′
i)| = |I(K ′

i+1)| = 1.

Proof. Let e.g. y1 ∈ I(K ′
1) and y2 ∈ I(K ′

2).

(i) If y1y2 /∈ E(G), then ⟨{x2, x, y1, y2}⟩G is a claw in G.

(ii) If y1y2 ∈ E(⟨K ′
i⟩G) for some i = 2, . . . , 5, then y1 ∈ K ′

1 ∩ K ′
i, contradicting the

assumption y1 ∈ I(K ′
i). Hence y1y2 ∈ E(⟨K⟩G) for some K ∈ KR,

(iii) Follows immediately by the structure of K ′
1, K

′
2 and K.

(iv) If e.g. y1, y
′
1 ∈ I(K ′

1), y1 ̸= y′1, then y1, y
′
1 ∈ Ki∩K, implying H ′ contains a triangle

and a double edge, a contradiction. �

Claim 5. There is no j, 1 ≤ j ≤ 5, such that I(K ′
i) ̸= ∅ for i = j, j + 1, j + 2.

Proof. Let e.g. I(K ′
i) ̸= ∅ for i = 1, 2, 3. By Claim 4, the edge y1y2 is in some clique

K1 ∈ KR, and y2y3 is in some K2 ∈ KR. Since y2 cannot be in three Krausz cliques,

we have K1 = K2, implying that y1y3 ∈ E(G) and y1y3 is also in K1. Then we have

y1 ∈ K1 ∩K ′
1, y2 ∈ K1 ∩K ′

2, y3 ∈ K1 ∩K ′
3, x2 ∈ K ′

1 ∩K ′
2 and x3 ∈ K ′

2 ∩K ′
3, implying

that K1, K ′
1, K

′
2, K

′
3 are vertices of a diamond in H ′, a contradiction. �

Claim 6. |{i| 1 ≤ i ≤ 5, I(K ′
i) ̸= ∅}| ≤ 3.

Proof. Otherwise we have I(K ′
i) ̸= ∅ for some three consecutive cliquesK ′

i, contradicting

Claim 5. �

Claim 7. |K ′
i ∩K ′

i+1| = 1, i = 1, . . . , 5.
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Proof. Let, to the contrary, e.g. |K ′
1 ∩ K ′

2| ≥ 2. Then ⟨{K ′
1, K

′
2}⟩H′ is a multiedge,

implying |K ′
1 ∩ K ′

2| = 2 and |K ′
i ∩ K ′

i+1| = 1 for i = 2, 3, 4, 5. Moreover, there is no i,

1 ≤ i ≤ 5, such that both I(K ′
i) ̸= ∅ and I(K ′

i+1) ̸= ∅, for otherwise, by Claim 4, H ′

contains a triangle, contradicting the fact that H ′ already contains a double edge. Hence

|{i| 1 ≤ i ≤ 5, I(K ′
i) ̸= ∅}| ≤ 2, and the vertices K ′

i with I(K ′
i) ̸= ∅ are nonconsecutive

on the 5-cycle CH = K ′
1K

′
2K

′
3K

′
4K

′
5K

′
1 in H ′. Moreover, if I(K ′

i) ̸= ∅ and I(K ′
j) ̸= ∅ for

some i, j, then K ′
i ∩ K ′

j = ∅, for otherwise the edge K ′
iK

′
j ∈ E(H ′) is a chord in CH ,

contradicting again the properties of SM -closed graphs.

This means that the 5-cycle CH is chordless, ⟨{K ′
1, K

′
2}⟩H′ is the only double edge, at

most two vertices of CH can have a neighbor outside CH (namely, those for which the

corresponding clique in G − x has some internal vertices), and these verties are noncon-

secutive.

Now, if I(K ′
1) = I(K ′

2) = ∅, then {K ′
1K

′
5, K

′
2K

′
3} is an essential edge-cut in both H ′

andH|K′
1K

′
2
, implying that neither G−x = L(H ′) nor (G−x)∗x2

= L(H ′|K′
1K

′
2
) is Hamilton-

connected, contradicting the fact that G − x is SM -closed (note that x2 is eligible since

x2 = L−1(K ′
1K

′
2) and K ′

1K
′
2 is in a double edge). Thus, we can suppose I(K ′

1) ̸= ∅. But

then at least two vertices of CH are of degree 2 in H ′ and we have a contradiction with

Lemma 9. �

Now we can finish the proof of Proposition 1. Clearly, I(K ′
i) ̸= ∅ for at least one i,

1 ≤ i ≤ 5, for otherwise V (G) = NG(x) and there is nothing to do. Thus, by Claim 6,

one, two or three cliques K ′
i have I(K ′

i) ̸= ∅. We consider these possibilities separately.

Subcase 2.1: |{i| 1 ≤ i ≤ 5, I(K ′
i) ̸= ∅}| = 3.

By Claim 5, we have I(K ′
i) ̸= ∅ for at most two consecutive cliques K ′

i. Thus, with-

out loss of generality let I(K ′
i) ̸= ∅ for i = 1, 2, 4 (i.e., I(K ′

3) = I(K ′
5) = ∅). By

Claim 4, there is a vertex y ∈ V (H ′) \ V (H) such that ⟨{K ′
1, K

′
2, y}⟩H′ is a triangle.

If dH′(K ′
3) = dH′(K ′

5) = 2, we have a contradiction by Lemma 9. Thus we have,

say, dH′(K ′
3) ≥ 3, i.e., besides K ′

2 and K ′
4, K ′

3 has at least one more neighbor, say,

z. Then z ∈ {K ′
1, K

′
2, K

′
4, K

′
5} since I(K ′

3) = ∅, and the only possibility that does

not create a double edge or a diamond (recall that H ′ already contains a triangle) is

z = K ′
5 and dH′(K ′

3) = dH′(K ′
5) = 3. Set H = ⟨{K ′

1, K
′
2, K

′
3, K

′
4, K

′
5, y}⟩H′ and note that

T1 = ⟨{K ′
1, K

′
2, y}⟩H′ and T2 = ⟨{K ′

3, K
′
4, K

′
5}⟩H′ are two triangles in H (hence also in

H ′) and, by Claim 4(iv), y and K ′
4 are the only vertices of H that can have adjacencies

outside H. But then H (or possibly H − yK ′
4, if yK

′
4 ∈ E(H ′)), has the structure shown

in Fig. 3 and we have a contradiction by Lemma 10.

Subcase 2.2: |{i| 1 ≤ i ≤ 5, I(K ′
i) ̸= ∅}| = 2.

By symmetry, we can choose the notation such that I(K ′
1) ̸= ∅ and either I(K ′

2) ̸= ∅ or

I(K ′
3) ̸= ∅.
Let first I(K ′

1) ̸= ∅, I(K ′
2) ̸= ∅. By Claim 4, there is a vertex y ∈ V (H ′) \ V (H) such

that ⟨{y,K ′
1, K

′
2}⟩H′ is a triangle and y is the only neighbor of K ′

1 and K ′
2 outside H. If

the cycle CH is cordless, we have a contradiction by Lemma 9, and if CH has a chord, we

have a contradiction by Lemma 7.
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Thus, suppose that I(K ′
1) ̸= ∅, I(K ′

3) ̸= ∅. By Claim 7 and by the properties of SM -

closed graphs, CH has no multiedge and at most one chord, but if CH has a chord, we

have a contradiction with Lemma 8. Hence CH is chordless. Then {h1, h4} is an essential

edge-cut in H ′, separating h5 from the rest of H ′, hence {x1, x4} is a vertex-cut in G− x,

separating x5 from the rest of G − x. The graph (G − x) + x1x4 is SM -closed, since it

is the line graph of a graph obtained from H ′ by contracting the edge h5 and adding a

pendant edge to the contracted vertex, and this operation creates neither a triangle nor

a multiedge. Thus, the graph G− x satisfies all conditions of part (ii) of Proposition 1.

Subcase 2.3: |{i| 1 ≤ i ≤ 5, I(K ′
i) ̸= ∅}| = 1.

If CH has a chord, we have a contradiction with Lemma 8, hence CH is chordless. But

then again, e.g. {h1, h4} is an edge-cut in H ′ and we can add the edge x1x4 to G− x to

satisfy all conditions of part (ii) of Proposition 1.
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