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Abstract

A connected edge-colored graphG is said to be rainbow-connected if any two distinct

vertices of G are connected by a path whose edges have pairwise distinct colors, and

the rainbow connection number rc(G) ofG is the minimum number of colors that can

make G rainbow-connected. We consider families F of connected graphs for which

there is a constant kF such that every connected F-free graph G with minimum

degree at least 2 satisfies rc(G) ≤ diam(G) + kF , where diam(G) is the diameter of

G. In this paper, we give a complete answer for |F| = 1, and a partial answer for

|F| = 2.

1 Introduction

We consider undirected finite simple graphs, and for terminology and notation not defined

here we refer to [3]. To avoid trivial cases, all graphs considered here will be connected

with at least one edge.

An edge-colored connected graph G is called rainbow-connected if each pair of distinct

vertices of G is connected by a rainbow path, that is, by a path whose edges have pairwise

distinct colors. Note that the edge coloring need not be proper. The rainbow connection

number of G, denoted by rc(G), is the minimum number of colors that can make G

rainbow-connected.
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The concept of rainbow connection was introduced by Chartrand et al. in [7]. It is

easy to observe that if G has n vertices then rc(G) ≤ n−1, since we can color the edges of

some spanning tree of G with different colors and then color the remaining edges with one

of the already used colors. Chartrand et al. determined the precise value of the rainbow

connection number for several graph classes including complete multipartite graphs [7].

The rainbow connection number has been studied for further graph classes in [4, 8, 11, 14]

and for graphs with fixed minimum degree in [4, 6, 12, 16]. See [15] for a survey.

The computation of rc(G) is known to be NP-hard ([5, 13]). In fact, it is already

NP-complete to decide whether rc(G) = 2, and it is also NP-complete to decide whether

a given edge-colored graph (with an unbounded number of colors) is rainbow-connected

[5]. More generally, it has been shown in [13] that for any fixed k ≥ 2 it is NP-complete

to decide whether rc(G) = k.

In the following proposition, we summarize some obvious facts and observations for

the rainbow connection number of graphs.

Proposition A. Let G be a connected graph of order n. Then

(i) 1 ≤ rc(G) ≤ n− 1,

(ii) rc(G) ≥ diam(G),

(iii) rc(G) = 1 if and only if G is complete,

(iv) rc(G) = n− 1 if and only if G is a tree.

Note that the difference rc(G) − diam(G) can be arbitrarily large, as can be seen

by considering G ≃ K1,n−1, for which rc(K1,n−1) − diam(K1,n−1) = (n − 1) − 2 = n − 3.

Especially, each bridge of G requires a single color. Therefore, connected bridgeless graphs

have been studied.

Theorem B [2]. For every connected bridgeless graph G with radius r,

rc(G) ≤ r(r + 2).

Moreover, for every integer r ≥ 1, there exists a bridgeless graph G with radius r and

rc(G) = r(r + 2).

Note that, since rad(G) ≤ diam(G), Theorem B gives in bridgeless graphs an upper

bound on rc(G) which is quadratic in terms of the diameter of G. In this paper, we will

be interested in finding conditions on a graph G that imply a linear upper bound on rc(G)

in terms of diam(G).

Let F be a family of connected graphs. We say that a graph G is F-free if G does not

contain an induced subgraph isomorphic to a graph from F . Specifically, for F = {X}
we say that G is X-free, and for F = {X, Y } we say that G is (X, Y )-free. The members

of F will be referred to in this context as forbidden induced subgraphs, and for |F| = 2 we

also say that F is a forbidden pair.
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Graphs characterized in terms of forbidden induced subgraphs are known to have

many interesting properties. Although, by virtue of Theorem B, rc(G) can be (even

for bridgeless graphs) still quadratic in terms of diam(G), it turns out that forbidden

subgraph conditions can remarkably lower the upper bound on rc(G).

In [10], the authors considered the question for which families F of connected graphs, a

connected F -free graph satisfies rc(G) ≤ diam(G)+kF , where kF is a constant (depending

on F), and gave a complete answer for 1 ≤ |F| ≤ 2 by the following two results (where

N denotes the net, i.e. the graph obtained by attaching a pendant edge to each vertex of

a triangle).

Theorem C [10]. Let X be a connected graph. Then there is a constant kX such that

every connected X-free graph G satisfies rc(G) ≤ diam(G) + kX , if and only if X = P3.

Theorem D [10]. Let X, Y be connected graphs, X, Y ̸= P3. Then there is a constant

kXY such that every connected (X, Y )-free graph G satisfies rc(G) ≤ diam(G) + kXY , if

and only if (up to symmetry) either X = K1,r, r ≥ 4 and Y = P4, or X = K1,3 and Y is

an induced subgraph of N .

Moreover, it was also shown in [10] that the (seemingly more general) question of

finding families F , 1 ≤ |F| ≤ 2, implying a linear upper bound on rc(G), i.e., such that

every connected F -free graph G satisfies rc(G) ≤ qXY · diam(G) + kXY , where qXY , kXY

are constants, has the same solution as in Theorems C, D.

In this paper, we will consider an analogous question under an additional assumption

δ(G) ≥ 2. Under this assumption, such an upper bound on rc(G) is already known for

graphs from some special classes of graphs, such as e.g. interval graphs, AT-free graphs,

threshold graphs or circular arc graphs (see [6], or Theorem 5.2.2. in [15]). In this paper,

we will consider the following question.

For which families F of connected graphs, there is a constant kF such that a connected

graph G with δ(G) ≥ 2 being F -free implies rc(G) ≤ diam(G) + kF?

We give a complete answer for |F| = 1 in Section 3, and a partial answer for |F| = 2

in Section 4. Finally, in Section 5 we show that there are no more families with |F| ≤ 2

that would imply a linear bound on rc(G) in terms of diam(G) for connected graphs G

with δ(G) ≥ 2.

2 Preliminary results

In this section we summarize some further notations and facts that will be needed for the

proofs of our results.
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An edge e ∈ E(G) such that G− e is disconnected is called a bridge, and a graph with

no bridges is called a bridgeless graph. An edge such that one of its vertices has degree

one is called a pendant edge. The subdivision of a graph G is the graph obtained from G

by adding a vertex of degree 2 to each edge of G. For graphs X, G, we write X ⊂ G if X

is a subgraph of G, X
IND

⊂ G if X is an induced subgraph of G, and X ≃ G if X and G are

isomorphic. For two vertices x, y ∈ V (G), we denote by dist(x, y) the distance between

x and y in G. The diameter and the radius of a graph G will be denoted by diam(G)

and rad(G), respectively. A shortest path joining two vertices at distance diam(G) will

be referred to as a diameter path.

For a set S ⊂ V (G) and an integer k ≥ 1, the neighborhood at distance k of S is the

set Nk
G(S) of all vertices of G at distance k from S. In the special case when k = 1, we

simply write NG(S) for N
1
G(S), and if |S| = 1 with x ∈ S, we write NG(x) for NG({x}).

For a set M ⊂ V (G), we set NM(S) = NG(S) ∩M and NM(x) = NG(x) ∩M , and for a

subgraph P ⊂ G, we write NP (x) for NV (P )(x). We will also use the closed neighborhood

of a vertex defined by NG[x] = NG(x) ∪ {x} and of a subgraph P ⊂ G defined by

NG[P ] = NG(V (P )) ∪ V (P ). Finally, we will use Pk to denote the path on k vertices.

A set D ⊂ V (G) is dominating if every vertex in V (G) \ D has a neighbor in D.

A dominating set D in a graph G is called a two-way dominating set if D includes all

vertices of G of degree 1. In addition, if G[D] is connected, we call D a connected two-way

dominating set. Note that if δ(G) ≥ 2, then every (connected) dominating set in G is a

(connected) two-way dominating set.

Theorem E [6]. If D is a connected two-way dominating set in a graph G, then

rc(G) ≤ rc(G[D]) + 3.

In our proofs, we will also need the following result.

Theorem F [1]. Let G be a connected P5-free graph. Then G has a dominating clique

or a dominating P3.

3 One forbidden subgraph

In this section, we characterize all connected graphs X such that every connected X-free

graph G with δ(G) ≥ 2 satisfies rc(G) ≤ diam(G) + kX , where kX is a constant.

In [10], we have shown that, without the assumption δ(G) ≥ 2, the only connected

graph X for which there is a constant kX such that rc(G) ≤ diam(G) + kX for every

connected X-free graph G, is the path X = P3 (see Theorem C).

We show that, for graphs G with δ(G) ≥ 2, the only such graph X is the path P5 (and

its induced subgraphs).

4



Theorem 1. Let X be a connected graph. Then there is a constant kX such that every

connected X-free graph G with minimum degree δ(G) ≥ 2 satisfies rc(G) ≤ diam(G)+kX ,

if and only if X is an induced subgraph of P5.

Furthermore, if G is connected P5-free with δ(G) ≥ 2, then rc(G) ≤ diam(G) + 3.

In the proof of Theorem 1, we will need the following fact.

Proposition 2. Let G be a connected P5-free graph with n1 vertices of degree 1. Then

rc(G) ≤ 5 + n1.

Proof. By Theorem F, the graph G has a dominating set D which induces a clique or

a P3. Hence rc(G[D]) ≤ 2. Now let D1 be the set of all vertices of degree 1 in G, and set

D+ = D∪D1. Then |D+| = |D|+n1 and rc(G[D+]) ≤ 2+n1. Moreover, D+ is connected

since D is connected and dominating. Therefore, D+ is a connected two-way dominating

set and hence rc(G) ≤ rc(G[D+]) + 3 ≤ 5 + n1.

Proof of Theorem 1. Let G be connected P5-free. If diam(G) = 1, then G is a clique,

and then rc(G) = 1 = diam(G). If diam(G) ≥ 2, then, immediately by Proposition 2,

rc(G) ≤ 5 ≤ diam(G) + 3.

Now we show that there is no other such graph X. Let t0 ≥ 3 and, for t ≥ t0, let

(see Fig. 1):

• Gt
1 be the graph obtained by attaching a pendant edge to each vertex of a complete

graph Kt,

• Gt
2 be the graph obtained by attaching a triangle to each vertex of degree 1 of a

star K1,t,

• Gt
3 be the graph obtained by attaching a cycle of length 4 to each vertex of degree 1

of a star K1,t,

• Gt
4 be the graph obtained by attaching a triangle to each vertex of degree 1 of the

graph Gt
1.
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Figure 1: The graphs Gt
1, G

t
2, G

t
3 and Gt

4

Clearly rc(Gt
2) ≥ t but diam(Gt

2) = 4, hence X is an induced subgraph of a subdivision

of a star or X contains a triangle. Since rc(Gt
3) ≥ t but diam(Gt

3) = 6, and Gt
3 is

triangle free, X is an induced subgraph of a subdivision of a star. Finally, rc(Gt
4) ≥ t but

diam(Gt
4) = 5, and Gt

4 is K1,3-free, hence X is a subdivision of K1,2, i.e. the path P5 (or

its induced subgraph).
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4 Pairs of forbidden subgraphs

Let Si,j,k denote the graph obtained by identifying one endvertex of three vertex disjoint

paths of lengths i, j, k; Zi the graph obtained by attaching a path of length i to a vertex of

a triangle, and let Ni,j,k denote the graph obtained by identifying each vertex of a triangle

with an endvertex of one of three vertex disjoint paths of lengths i, j, k. In this context,

we will also write Zt
1 for the graph Gt

2 introduced in the proof of Theorem 1 (see Fig. 2).

It is easy to observe that if X
IND

⊂ X ′, then every (X,Y )-free graph is also (X ′, Y )-free.

Thus, when considering forbidden pairs implying some graph property, we will be always

interested in finding maximal pairs for the property, i.e., pairs X, Y such that, if replacing

one of X, Y , say, X, with a graph X ′ ̸= X such that X
IND

⊂ X ′, then the statement under

consideration is not true for (X ′, Y )-free graphs.

The following statement gives a list of all possible maximal pairs of forbidden sub-

graphs X, Y for which there can be a constant kXY such that rc(G) ≤ diam(G)+ kXY for

any connected (X, Y )-free graph G with δ(G) ≥ 2. By virtue of Theorem 1, we exclude

the case when one of X,Y is P5.

Theorem 3. Let X,Y ̸= P5 be a maximal pair of connected graphs for which there

is a constant kXY such that every connected (X,Y )-free graph G with δ(G) ≥ 2 satisfies

rc(G) ≤ diam(G) + kXY . Then (up to symmetry) either X = S2,2,2 and Y = N2,2,2,

X = P6 and Y = Zr
1 (r ∈ N), or Y = Z3 and X ∈ {P7, S3,3,3, S1,1,4}.
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Figure 2: The graphs S2,2,2, S3,3,3, S1,1,4, Z3, N2,2,2 and Zr
1 .

Proof. Let t ≥ 1 and let (see Fig. 3):

• Gs,t
5 be the graph obtained by attaching a cycle of length s ≥ 4 to each pendant

edge of St,t,t for any t ≥ 1,

• Gt
6 be the graph obtained by attaching a triangle to each pendant edge of the graph

Nt,t,t for any t ≥ 1,

• Gt
7 be the graph obtained by attaching a C4 to each pendant edge of the graph Gt

1

for any t ≥ 1.
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Figure 3: The graphs Gs,t
5 , Gt

6 and Gt
7.

We will also use the graphs Gt
2(= Zt

1), G
t
3 and Gt

4 shown in Fig. 1.

Consider the graph Gs,t
5 . Clearly diam(Gs,t

5 ) = 2
(
⌊ s
2
⌋+ t

)
. Since all bridges of Gs,t

5

must have mutually distinct colors, rc(Gs,t
5 ) ≥ 3t. Specifically, for the graph G2t,3t

5 , t ≥ 2,

we obtain diam(G2t,3t
5 ) = 8t and rc(G2t,3t

5 ) ≥ 9t = 9
8
diam(G2t,3t

5 ). Similarly, for the graph

Gt
6 we have diam(Gt

6) = 2t + 3 and rc(Gt
6) ≥ 3t, implying rc(Gt

6) ≥ 3
2
diam(Gt

6)− 9
2
, and

for the graph Gt
7 we have diam(Gt

7) = 7 while rc(Gt
7) ≥ t. Thus, for sufficiently large t,

each of the graphs G2t,3t
5 , Gt

6, G
t
7 must contain an induced subgraph isomorphic to some

of the graphs X,Y .

We can suppose that, up to symmetry, X
IND

⊂ Gs,t
5 , implying X = Si,j,k, i, j, k ≥ 1,

or X = Pi, i ≥ 6 (note that X
IND

⊂ Gs,t
5 must be true for any sufficiently large integers s

and t).

Now consider the graph Gt
2. There are two possibilities:

(i) Y
IND

⊂ Gt
2. Then Y

IND

⊂ Zr
1 for some r ≥ 1. Consider the graph Gt

4. First, if X
IND

⊂ Gt
4,

we have X = P6 and Y
IND

⊂ Zr
1 since Gt

4 is Si,j,k-free for any i, j, k ≥ 1. Secondly, if

Y
IND

⊂ Gt
4, observing that the only common induced subgraph of Gt

2 and Gt
4 is Z3, we

have Y = Z3. Now, Y
IND

⊂ Gt
3 implies Y = P5, which is excluded by the assumptions,

hence we have X
IND

⊂ Gt
3, from which X = P7, X = S3,3,3 or X = S1,1,4.

(ii) X
IND

⊂ Gt
2. Then the only common induced subgraphs of both Gs,t

5 and Gt
2 are S2,2,2

and P5 (or their induced subgraphs). But since P5 is excluded by the assumptions,

we have X = S2,2,2. Now consider the graphs Gt
4, G

t
6 and Gt

7. Since all of them

are Si,j,k-free for any i, j, k ≥ 1, we get Y
IND

⊂ Gt
4, Y

IND

⊂ Gt
6 and Y

IND

⊂ Gt
7, implying

that Y = N2,2,2, Y = Z3 or Y = P6. The case X = S2,2,2 and Y = P6 is covered by

case (i) since S2,2,2

IND

⊂ Zr
1 for any r ≥ 3, and the case X = S2,2,2, Y = Z3 is covered

by the pair X = S3,3,3, Y = Z3 in case (i).

Now we will consider sufficiency of some of the forbidden pairs given in Theorem 3.

Namely, in this paper, we prove sufficiency for the pair X = P6, Y = Zr
1 (r ∈ N) in
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Theorem 4, for the pair X = P7, Y = Z3 in Theorem 6, and for the pair X = S1,1,4,

Y = Z3 in Theorem 8.

The sufficiency proofs for the remaining two pairs X = S3,3,3, Y = Z3 and X = S2,2,2,

Y = N2,2,2 are much more complicated and require different techniques, and these will be

therefore published (and the characterization will be completed) in a separate paper [9].

Theorem 4. Let r be a positive integer and let G be a connected (P6, Z
r
1)-free graph

with δ(G) ≥ 2. Then rc(G) ≤ diam(G) + 20 + r.

Proof. Since G is P6-free, diam(G) = d ≤ 4. If d = 1, then G is complete and we are

done. So we assume that d ≥ 2.

If G is bridgeless, then, by Theorem B, rc(G) ≤ rad(G)(rad(G) + 2) ≤ d(d + 2) =

d+d(d+1) ≤ d+20. Hence suppose that G contains a bridge e = xy. Since δ(G) ≥ 2, we

have d ≥ 3. If d = 3, then V (G) = NG[x]∪NG[y], the bridge xy is a two-way dominating

set in G and, by Theorem E, rc(G) ≤ 1 + 3 = 4 = diam(G) + 1.

Thus, it remains to consider the case d = 4. Let X,Y be the components of G − e

(X containing x). Since δ(G) ≥ 2, both X and Y are nontrivial. Let u ∈ V (X) be at

maximum distance from x and, similarly, let v ∈ V (Y ) be at maximum distance from y.

Since G is P6-free, we get, up to symmetry, dist(x, u) = 1 and dist(y, v) = 2. Thus,

V (X) ⊂ NG[x] and, since δ(G) ≥ 2, X is bridgeless. Similarly, since δ(G) ≥ 2 and every

vertex of Y is at distance at most 2 from y, every bridge in Y is incident with the vertex y.

Thus, every bridge in G is incident with y.

Let B ⊂ G denote the subgraph determined (i.e., edge-induced) by the set of all

bridges in G (note that B is a star with center at y). Since G is Z1,r-free, every vertex of

G is at distance at most 2 from y, and since δ(G) ≥ 2, we have |E(B)| < r. Clearly, each

component of G−E(B) is bridgeless. Let A denote the only (possibly trivial) component

of G − E(B) containing y. Then A is bridgeless and of radius at most 2, implying that

rc(A) ≤ 2·4 = 8 by Theorem B. In the rest of G, i.e., in the graph G1 = G[V (G−A)∪{y}],
V (B) is a two-way dominating set, implying that rc(G1) ≤ rc(B) + 3 = r− 1 + 3 = r+ 2

since each bridge must have a distinct color. Therefore rc(G) ≤ r + 2 + 8 = r + 10 =

diam(G) + r + 6.

Now we turn our attention to the forbidden pairs (Z3, P7) and (Z3, S1,1,4). Since all

such graphs are Z3-free, the following lemma will be useful in our proofs.

Lemma 5. Let G be a connected Z3-free graph with ω(G) ≥ 3 and δ(G) ≥ 2 such that

G contains a bridge. Then rc(G) ≤ 4.

Proof. Let xy be a bridge in G. Then there are two components of G − xy. Let

G1 denote a component containing a triangle and let G2 denote the other component of

G − xy. Up to symmetry, suppose that x ∈ V (G1) and y ∈ V (G2). Then every vertex
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of G2 is adjacent to y, for otherwise we get an induced Z3 with a triangle in G1. This

implies that ω(G2) ≥ 3 since δ(G) ≥ 2. Now, every vertex of G1 is adjacent to x since

otherwise we get an induced Z3 with a triangle in G2. This implies that D = {x, y} is a

two-way dominating set in G and, by Theorem E, rc(G) ≤ rc(G[D]) + 3 = 4.

Theorem 6. Let G be a connected (Z3, P7)-free graph with δ(G) ≥ 2. Then rc(G) ≤
diam(G) + 30.

Proof. Since G is P7-free, diam(G) ≤ 5. If G is bridgeless, we have rc(G) ≤
rad(G)(rad(G) + 2) ≤ diam(G)(diam(G) + 2) ≤ diam(G) + 30 by Theorem B. Hence

we assume that G has a bridge e = xy. By Lemma 5, we can suppose that G is triangle-

free.

Let A,B denote the components of G−e. Since δ(G) ≥ 2, both A and B are nontrivial,

and since G is triangle-free, each of them contains a vertex at distance 2 from e = xy.

Let u ∈ V (A) be at maximum distance from x, and v ∈ V (B) be at maximum distance

from y.

Claim 1. All vertices of G are at distance at most 2 from e.

Proof. If, say, dist(y, v) ≥ 3, then dist(u, v) ≥ 6, a contradiction. �

Claim 2. A, B are bridgeless.

Proof. Let, say, f be a bridge in B. If y /∈ f , then, by Claim 1, f is a pendant edge,

contradicting the assumption δ(G) ≥ 2. Hence y ∈ f . Set f = yz. By Claim 1, all vertices

of B are adjacent to z. Since δ(G) ≥ 2, B contains a triangle, a contradiction. �

Now, by Claim 1, A and B have radius 2, and, by Claim 2, A and B are bridgeless.

Thus, by Theorem B, rc(A) ≤ 8, rc(B) ≤ 8, and, with one extra color for e, we have

rc(G) ≤ 8 + 1 + 8 = 17 ≤ diam(G) + 14, since diam(G) ≥ 3.

For the pair (Z3, S1,1,4), we will need the following lemma.

Lemma 7. Let G be a (Z3, S1,1,4)-free graph, let x0, xd ∈ V (G) be vertices at distance

d ≥ 8, let P = x0x1 . . . xd be a shortest (x0, xd)-path and let y ∈ V (G) \ V (P ) be at

distance 1 from P . Then y satisfies one of the following:

(i) NP (y) = {x0},
(ii) NP (y) = {xd},
(iii) d = 8 and NP (y) = NG(y) = {x3, x5}.

9



Proof. If |NP (y)| = 1, i.e., NP (y) = {xi} for some i, 0 ≤ i ≤ d, then, for 1 ≤ i ≤ d− 4

we have G[{xi, y, xi−1, xi+1, xi+2, xi+3, xi+4}] ≃ S1,1,4 and for 4 ≤ i ≤ d − 1 we have

G[{xi, y, xi+1, xi−1, xi−2, xi−3, xi−4}] ≃ S1,1,4. Thus, we have a contradiction in all cases

except (i) and (ii).

If |NP (y)| ≥ 3, then NP (y) = {xi−1, xi, xi+1} for some i, 1 ≤ i ≤ d − 1, since P is

shortest. But then either G[{xi+1, y, xi, xi+2, xi+3, xi+4}] (for i ≤ d− 4), or G[{xi−1, y, xi,

xi−2, xi−3, xi−4}] (for i ≥ 4) is a Z3, a contradiction.

Thus, |NP (y)| = 2. If the neighbors of y on P are consecutive, say, NP (y) = {xi, xi+1},
then either G[{xi+1, y, xi, xi+2, xi+3, xi+4}] or G[{xi, y, xi+1, xi−1, xi−2, xi−3}] is a Z3, a con-

tradiction. Hence NP (y) = {xi−1, xi+1} for some i, 1 ≤ i ≤ d − 1 (recall that the

neighbors of y on P are at distance at most 2 since P is shortest). But then either

G[{xi+1, y, xi, xi+2, xi+3, xi+4, xi+5}] or G[{xi−1, y, xi, xi−2, xi−3, xi−4, xi−5}] is an S1,1,4, un-

less d = 8 and NP (y) = {x3, x5}.

Thus, to finish the proof, it remains to show that in this case also NG(y) = {x3, x5}.
Let, to the contrary, z ∈ V (G) \ V (P ) be a neighbor of y. Suppose that z has a neighbor

on P . Obviously zx0 /∈ E(G) and zx8 /∈ E(G) since P is shortest; by what we have

already proved, we have NP (z) = {x3, x5}. But then G[{x3, z, y, x2, x1, x0}] ≃ Z3 , a

contradiction. Thus, z has no neighbor on P , implying G[{y, z, x3, x5, x6, x7, x8}] ≃ S1,1,4,

a contradiction again.

Theorem 8. Let G be a connected (Z3, S1,1,4)-free graph with δ(G) ≥ 2. Then

rc(G) ≤ diam(G) + 56.

Proof. Suppose first that diam(G) ≥ 8, and let P = x0x1 . . . xd, d ≥ 8, be a diameter

path in G. Since δ(G) ≥ 2, x0 has a neighbor, say, y, outside P . Since P is a diameter

path, there is a shortest (y, xd)-path Q′ of length d − 1 or d. The paths P and Q′ are

internally vertex-disjoint, for otherwise, if xj, 1 ≤ j ≤ d, is the first internal vertex of

P that is on Q′ and w is the predecessor of xj on Q′, then xj is an internal vertex of P

having a neighbor outside P , contradicting Lemma 7, unless d = 8 and j = 5, in which

case we have a similar contradiction on the predecessor of w on Q′.

Set Q = x0yQ
′xd. The graph G1 = G − x0 is (Z3, S1,1,4)-free and, by Lemma 7,

P1 = yQxdPx1 is a shortest (y, x1)-path in G1 of length greater than 8. By Lemma 7,

no internal vertex of P1 has a neighbor outside P1 in G1, and, by the distance, also in G.

Using a symmetric argument in G2 = G − xd, we conclude that G is a cycle, implying

rc(G) ≤ diam(G) + 1.

Secondly, suppose that diam(G) = d ≤ 7. If G is bridgeless, then, by Theorem B,

we have rc(G) ≤ d(d + 2) = d + d(d + 1) ≤ d + 56. Thus, let e = xy be a bridge in

G, and let A,B be the components of G − e (A containing x). Since δ(G) ≥ 2, both

A and B are nontrivial. Let u ∈ V (A) be at maximum distance from x and, similarly,

let v ∈ V (B) be at maximum distance from y. By Lemma 5, we can suppose that G is
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triangle-free. Thus, since δ(G) ≥ 2, we have dist(u, x) ≥ 2 and dist(v, y) ≥ 2, implying

diam(G) = dist(u, x) + dist(v, y) + 1 ≥ 5.

Claim 1. Both dist(u, x) = 2 and dist(v, y) = 2.

Proof. Let, say, dist(u, x) ≥ 3. Let z be the first vertex on a shortest (y, v)-path Q (in

the orientation from y to v) that is of degree at least 3 (such a vertex must exist since

δ(G) ≥ 2), and let w be a neighbor of z outside Q. Clearly z ̸= v (since v is at maximum

distance from y), hence let z+ denote the successor of z on Q. Now wz+ /∈ E(G) since G is

triangle-free, but then z, w, z+ together with the first four vertices of a shortest (z, u)-path

induce an S1,1,4, a contradiction. �

Claim 2. Both A and B are bridgeless.

Proof. Let f be a bridge in, say, A. By Claim 1 and δ(G) ≥ 2, we have x ∈ f , but then

δ(G) ≥ 2 implies that A contains a triangle, a contradiction. �

Now, both A and B are of radius at most 2 by Claim 1, and are bridgeless by Claim 2.

By Theorem B, we have rc(A) ≤ rad(A)(rad(A)+ 2) ≤ 8, and similarly rc(B) ≤ 8. Using

one extra color for the edge e, we obtain rc(G) ≤ 8 + 1 + 8 = 17 ≤ diam(G) + 12, since

diam(G) ≥ 5.

5 Concluding remarks

In Sections 3 and 4, we have studied forbidden families F with |F| ≤ 2 implying that

rc(G) ≤ diam(G) + kF . As a next step, it is natural to ask for forbidden families F
implying that rc(G) is bounded by a linear function of diam(G). Thus, we can address

the following question.

For which families F of connected graphs, there are constants qF , kF such that a connected

graph G with δ(G) ≥ 2 being F -free implies rc(G) ≤ qF · diam(G) + kF?

In [10], we have shown that, without the assumption δ(G) ≥ 2, the answer is the same

as in the case qF = 1. By a slight modification of the argument from [10], we will show

an analogous result for δ(G) ≥ 2.

For |F| = 1, it is easy to observe that all the graphs Gt
2, G

t
3, G

t
4, used in the necessity

part of the proof of Theorem 1, have bounded diameter but unbounded rainbow connection

number for t → ∞. Thus, for |F| = 1, the answer is the same as in Theorem 1, i.e., the

only such graph X is the path X = P5.

Our last result, which is a counterpart to Theorem 3, shows that the situation is the

same also for |F| = 2, i.e., for pairs of forbidden subgraphs.
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Theorem 9. Let X,Y ̸= P5 be a maximal pair of connected graphs for which there

are constants qXY , kXY such that every connected (X, Y )-free graph G with δ(G) ≥ 2

satisfies rc(G) ≤ qXY · diam(G) + kXY . Then (up to symmetry) either X = S2,2,2 and

Y = N2,2,2, X = P6 and Y = Zr
1 (r ∈ N), or Y = Z3 and X ∈ {P7, S3,3,3, S1,1,4}.

Proof. Let q, k be arbitrary constants and let s be a positive integer such that 3·2s−3 >

q + 1. Let

• Ts be a balanced cubic tree of depth s+1, i.e., with 3·2s leaves (vertices of degree 1;
for s = 2, see Fig. 4 left),

• T ′
s be the subdivision of Ts (for s = 2, see Fig. 4 middle),

• Ts,r be the tree obtained by identifying each leaf of a tree Ts with an endvertex of

a path Pr+1,

• T ′
s,r be the tree obtained by identifying each leaf of a tree T ′

s with an endvertex of

a path Pr+1 (for s = 2, see Fig. 4 right).
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Figure 4: The trees T2, T
′
2 and T ′

2,r

Now, for t ≥ s+ 1, let:

• Gs,t
8 be the graph obtained by identifying each leaf of a tree T ′

s,2t with one vertex

of a cycle C2t,

• Gs,t
9 be the line graph of the graph obtained by attaching two pendant edges to

each leaf of a tree Ts,2t

(for s = 1, see Fig. 5).

For the graph Gs,t
8 , we have diam(Gs,t

8 ) = 2(2s + 2 + 3t) and rc(Gs,t
8 ) ≥ |E(Ts,2t)| >

3 ·2s2t ≥ 3 ·2s−2(2t+3t) ≥ 3 ·2s−2(2s+2+3t) = 3 ·2s−3 ·diam(Gs,t
8 ) > (q+1) ·diam(Gs,t

8 )

since every bridge has to be colored with a different color. Hence there is a t1 such that,

for t ≥ t1, rc(G
s,t
8 ) > q · diam(Gs,t

8 ) + k.
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Figure 5: The graphs G1,t
8 and G1,t

9

For the graph Gs,t
9 , we analogously have diam(Gs,t

9 ) = 2s+1+4t+2 = 2s+4t+3 and,

since Gs,t
9 has 3 · 2s2t = 3 · 2s+1t bridges, we have rc(Gs,t

9 ) ≥ 3 · 2s+1t = 3 · 2s−2(4t+ 4t) >

3 · 2s−2(4t+ 2s+ 3) = 3 · 2s−2 · diam(Gs,t
9 ) > (q + 1) · diam(Gs,t

9 ). Hence there is a t2 such

that, for t ≥ t2, rc(G
s,t
9 ) > q · diam(Gs,t

9 ) + k.

We will also use the graphs Gt
2, G

t
3, G

t
4 and Gt

7 introduced in the proofs of Theorems 1

and 3, which, as already noted, have bounded diameter but their rainbow connection

number is unbounded for t → ∞; hence there is a t3 such that rc(Gt
i) > q · diam(Gt

i) + k

for t ≥ t3 and i = 2, 3, 4, 7.

Now, let X, Y be connected graphs implying that every connected (X,Y )-free graph

G satisfies rc(G) ≤ q · diam(G) + k, and set t0 = max{t1, t2, t3}. Then, by the above

discussion, for t ≥ t0, each of the graphs Gt
2, Gt

3, Gt
4, Gt

7, Gs,t
8 and Gs,t

9 contains an

induced X or Y .

We can suppose that, up to symmetry, X
IND

⊂ Gs,t
8 , implying that X is a tree of

maximum degree 3, in which no two vertices of degree 3 are adjacent. Now the remaining

part of the proof proceeds by exactly the same argument as the final part of the proof of

Theorem 3, with the only difference that, instead of the graphs Gs,t
5 and Gt

6, we use the

graphs Gs,t
8 and Gs,t

9 .
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