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Abstract

In this paper, we show that every 3-connected claw-free graph G has a

2-factor having at most max
{
2
5(α+1), 1

}
cycles, where α is the independence

number of G. As a corollary of this result, we also prove that every 3-connected

claw-free graph G has a 2-factor with at most
( 4|G|
5(δ+2)+

2
5

)
cycles, where δ is the

minimum degree of G. This is an extension of a known result on the number

of cycles of a 2-factor in 3-connected claw-free graphs.
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1 Introduction

A well-known conjecture by Matthews and Sumner [17] states that every 4-connected

claw-free graph is Hamiltonian. Recall that a graph is claw-free if it has no claw K1,3

as an induced subgraph. Thomassen [20] also posed the following conjecture: every

4-connected line graph is Hamiltonian. Note that Ryjáček [18] showed that these

two conjectures are equivalent, using a closure technique. These two conjectures

have attracted much attention during the last more than 25 years, but they are still

open.

To attack these conjectures, some researchers have considered the Hamiltonicity

of claw-free graphs with high connectivity conditions. In fact, Zhan [22], and inde-

pendently Jackson [12] proved that Thomassen’s conjecture is true for 7-connected

line graphs. Recently, Kaiser and Vrána [15] improved this result by showing that

every 5-connected claw-free graph with minimum degree at least six is Hamiltonian.

Like these, several researchers have attacked these conjectures in claw-free graphs

with high connectivity. See for example [11, 23].

On the other hand, it is also natural to ask what happens when we consider claw-

free graphs with low connectivity. Although it is known that there exist infinitely

many 3-connected claw-free graphs (also line graphs) having no Hamiltonian cycles,

we would like to find some “good” structures which have some properties close to

Hamiltonian cycles in such graphs. The main target of this paper is a 2-factor with

a bounded number of components. (See the survey [7] for other “good” structures.)

Recall that a 2-factor of a graph is a spanning subgraph in which all vertices

have degree two. A Hamiltonian cycle of a graph is actually a 2-factor with exactly

one component. In this sense, the fewer components a 2-factor has, the closer to a

Hamiltonian cycle it is. Choudum and Paulraj [4], and independently Egawa and

Ota [5] proved that if the minimum degree of a claw-free graph G is at least four,

then G has a 2-factor (without considering the number of components). Yoshimoto

[21] showed that if G is a 2-connected claw-free graph with minimum degree at least

three (specifically, if G is 3-connected), then G has a 2-factor.

Now we consider a 2-factor with bounded number of cycles in claw-free graphs.

Faudree, Favaron, Flandrin, Li and Liu [6] showed that a claw-free graph with min-

imum degree δ ≥ 4 has a 2-factor with at most 6|G|
δ+2

− 1 cycles. Gould and Jacobson

[10] improved this result for a claw-free graph with large minimum degree; a claw-free

graph with minimum degree δ ≥
(
4|G|

) 2
3 has a 2-factor with at most

⌈ |G|
δ

⌉
cycles.

Recently, Broersma, Paulusma and Yoshimoto showed the following result.

Theorem 1 (Broersma, Paulusma and Yoshimoto [1]) Every claw-free graph

G with minimum degree δ ≥ 4 has a 2-factor with at most

max
{ |G| − 3

δ − 1
, 1
}
cycles.
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Also Yoshimoto [21] showed that the coefficient 1
δ−1

of |G| is almost best possible.

Now we consider 2-connected or 3-connected claw-free graphs. Jackson and Yoshi-

moto [13] showed that every 2-connected claw-free graph G with minimum degree

at least four has a 2-factor with at most |G|+1
4

cycles, and moreover, with at most
2|G|
15

cycles if G is 3-connected. Čada, Chiba and Yoshimoto [2] proved that every

2-connected claw-free graph G with minimum degree δ ≥ 4 has a 2-factor in which

every cycle has the length at least δ. This result implies the existence of a 2-factor

with at most |G|
δ

cycles in a 2-connected claw-free graph G.

On the other hand, Kužel, Ozeki and Yoshimoto [16] focused on a relationship

between a 2-factor and maximum independent sets in a graph, and showed the fol-

lowing:

Theorem 2 (Kužel, Ozeki and Yoshimoto [16]) For every maximum indepen-

dent set S in a 2-connected claw-free graph G with minimum degree at least three,

G has a 2-factor in which each cycle contains at least one vertex in S, and moreover,

at least two vertices in S if G is 3-connected.

As a direct corollary of Theorem 2, we obtain that every 3-connected claw-free

graph G has a 2-factor with at most α/2 cycles, where α is the independence number

of G. Note that for every claw-free graph G, we have that α ≤ 2|G|
δ+2

, where α is the

independence number and δ is the minimum degree of G, respectively. (See for

example, Fact 8 in [8].) Therefore, the result of Kužel et al. implies the following

corollary.

Theorem 3 (Kužel, Ozeki and Yoshimoto [16]) Every 3-connected claw-free graph

G with minimum degree δ has a 2-factor with at most

max
{ |G|
δ + 2

, 1
}
cycles.

In this paper, we show the following result, which means that if we do not specify

a maximum independent set, for 3-connected claw-free graphs, we can find a 2-factor

with fewer cycles than the one obtained by Theorem 2.

Theorem 4 Every 3-connected claw-free graph with independence number α has a

2-factor with at most

max
{2

5
(α + 1), 1

}
cycles.

We do not know whether the coefficient 2
5
of α in Theorem 4 is best possible or

not. However, in Section 3, we show two examples to discuss sharpness of the result.

By the same argument as above, Theorem 4 implies the following corollary.

Corollary 5 Every 3-connected claw-free graph G with minimum degree δ has a

2-factor with at most ( 4|G|
5(δ + 2)

+
2

5

)
cycles.
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In Corollary 5, we decrease the coefficient of |G| in Theorem 3. This is the first

result that guarantees, in a 3-connected claw-free graph, the existence of a 2-factor

having number of cycles with coefficient of |G|/δ less than 1.

In the next section, we give two statements (Theorems 6 and 7), that are equiv-

alent to Theorem 4. After discussing sharpness of Theorem 4 in Section 3, we show

some lemmas in Sections 4 and 5. In Section 6, we prove Theorem 7.

2 Preliminaries

For a graph G and for S ⊂ V (G), G[S] denotes the subgraph of G induced by the

set S. We denote by NG(x) the neighborhood of a vertex x in a graph G.

For the proof of Theorem 4, we use the closure of a claw-free graph which was

introduced by Ryjáček [18] as follows. For each vertex x of a claw-free graph G,

NG(x) induces a subgraph G[NG(x)] with at most two components, and if G[NG(x)]

has two components, both of them must be cliques. In the case where G[NG(x)] is

connected and non-complete, we add edges joining all pairs of nonadjacent vertices

in NG(x). The closure cl(G) of G is the (unique) graph obtained by recursively

repeating this operation, as long as this is possible. Ryjáček, Saito and Schelp [19]

proved that a claw-free graph G has a 2-factor with at most c components if and only

if cl(G) has a 2-factor with at most c components. This implies that the following

statement is equivalent to Theorem 4.

Theorem 6 For every 3-connected claw-free graph G with independence number α,

cl(G) has a 2-factor with at most max
{

2
5
(α + 1), 1

}
cycles.

Ryjáček [18] proved that for every claw-free graph G, there exists a triangle-free

simple (i.e. with no parallel edges) graph H such that L(H) = cl(G). An even graph

is a graph in which all vertices have even degree, and a circuit is a connected even

graph. Let H be a graph. A set D of circuits and stars with at least three edges

in H is called a D-system of H, if every edge of H is contained in a member of D

or incident with a vertex in a circuit in D. For a D-system D of H, let |D| be the

number of circuits and stars in D. Also a D-system D is called a strong D-system of

H if D contains no star and every vertex of degree at least three in H is contained in

some circuit in D. Gould and Hynds [9] proved that the line graph L(H) of a graph

H has a 2-factor with c components if and only if there is a D-system D with |D| = c

in H. An edge set E0 of H is called an essential edge-cut if H −E0 contains at least

two components having an edge. A graph H is essentially k-edge connected if there

exists no essential edge-cut with at most k− 1 edges. Clearly L(H) is k-connected if

and only if H is essentially k-edge-connected. Let α′(H) be the number of edges of

a maximum matching of H. Note that when L(H) = G, then α(G) = α′(H). Then

the following is also equivalent to Theorems 4 and 6.
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The graph H The graph Hi

Figure 1: The graphs H and Hi.

Theorem 7 Let G be an essentially 3-edge connected graph. Then G has a D-

system D with |D| ≤ max{2
5
(α′(G) + 1), 1}.

Note that the statement of Theorem 7 remains equivalent to Theorems 4 and 6

even if restricted to triangle-free simple graphs; however, its present form will be

more convenient for our proof.

An edge e = uv of a graph G is said to be pendant if the degree of u or v is one

in G. For an integer l ≥ 2, the cycle of length l is denoted by Cl. For an integer

g ≥ 2, K2,2g denotes the complete bipartite graph such that one partite set consists

of two vertices and the other consists of 2g vertices. For a subgraph H of a graph G

and for a set E1 of edges in G − E(H), we define H + E1 as the graph induced by

edges E(H) ∪ E1.

3 Sharpness of Theorem 4

In this section, we discuss how far Theorem 4 is from being sharp. First, we consider

the upper bound on the number of components of a 2-factor. Although we do not

know whether the coefficient 2
5
of α (or α′ in Theorem 7) is best possible or not, the

following graph shows that it cannot be less than 2
7
. Let H0 be the Petersen graph,

let M0 be a maximum matching of H0 and let H be the graph obtained from H0 by

subdividing all edge in M0 once (see the left side of Figure 1). Suppose that H has

a D-system D with |D| = 1, say, {D} = D. Since D has to pass through all vertices

of H0 (because otherwise D cannot dominate a subdivided edge in H incident with

a vertex not passed by D), D corresponds to a Hamiltonian cycle of the Petersen

graph H0, a contradiction. Thus, every D-system of H has at least two members.

Since α(L(H)) = α′(H) = 7, the coefficient of α′ in Theorem 7 has to be at least 2
7
.

Considering the graph L(H), we can also show that the coefficient of α in Theorem

4 has to be at least 2
7
.

Next we consider the 3-connectedness (or essential 3-edge connectedness) assump-

tion in Theorem 4 (Theorem 7, respectively). Unfortunately, we do not know whether

the 2-connectedness (or essential 2-edge connectedness) might be sufficient for the

result, but we give examples which show that we cannot decrease the coefficient to
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less than 1
3
if we only assume 2-connectedness (or essential 2-edge connectedness,

respectively). Let H ′
i be obtained from the graph with two vertices and three inter-

nally disjoint paths each of which contains i internal vertices. We add two pendant

edges to each internal vertex of H ′
i and obtain the graph Hi (see the right side of

Figure 1). Note that α′(Hi) = 3i. Since every circuit of Hi has to miss at least one

of the three paths of Hi, each D-system Di of Hi has at least i stars, so it has at

least i+ 1 members. This implies that

lim
i→∞

|Di|
α′(Hi)

≥ lim
i→∞

i+ 1

3i
=

1

3
.

4 Contractions and reconstructions

4.1 Contractions used in this paper

In this paper, in order to make a given graph smaller, we consider the following six

types of contractions. Also, we use the reverse operation of those, called reconstruc-

tions. Let G be a graph. (Possibly, G may have multiple edges.)

A suppressing:

Let x be a vertex of degree two and let e be an edge incident with x. A suppressing

(of x) is a contraction of the edge e to one vertex and removing the created loop.

A C2-contraction, a C3-contraction and a primary K2,2g-contraction:

Let C be a cycle of length two in G. A C2-contraction (at C) consists of the following

three operations, executed in order:

• contracting C to one vertex,

• removing all created loops,

• adding a new pendant edge to the contracted vertex.

When C is a cycle of length three in G or a subgraph isomorphic to K2,2g with

an integer g ≥ 2, we define similarly a C3-contraction (at C) or a primary K2,2g-

contraction, respectively.

A secondary K2,2g-contraction:

Let C be a subgraph of G isomorphic to K2,2g for some g ≥ 2. Let x1, x2 be the

two vertices of the smaller partite set of C, and let Y be the other partite set. For

Y1 ⊂ Y with Y1 ̸= ∅ and Y1 ̸= Y , a secondary K2,2g-contraction at C with respect to

Y1 consists of the following five operations, executed in order:

• identifying all vertices in Y1 to one vertex, say y1,
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• identifying all vertices in Y \ Y1 to one vertex, say y2,

• replacing multiple edges between xi and yj with a single edge for i, j = 1, 2,

• removing all loops,

• removing all pendant edges incident with x1 or x2.

Note that although the original graph is simple, the graph obtained by a secondary

K2,2g-contraction might have multiple edges between y1 (or y2) and some vertex z

with z ̸= x1, x2.

A C5-contraction:

Let C be a cycle of length five. A C5-contraction (at C) consists of the following two

operations, executed in order:

• contracting C to one vertex,

• removing all created loops.

4.2 3-edge connectedness

In this subsection, we consider 3-edge connectedness of a graph obtained by the

contractions defined in Section 4.1. By the definition, the following is an easy fact.

Fact 8 Let G be an essentially 3-edge connected graph, and let G′ be a graph

obtained from G by a suppressing, a C2-contraction, a C3-contraction, a primary

K2,2g-contraction, or by a C5-contraction. Then G
′ is essentially 3-edge connected.

On the other hand, for a secondary K2,2g-contraction, we show the following

useful lemma. For a subgraph C of G isomorphic to K2,2g with g ≥ 2, C is called

good if all but at most two vertices in Y have degree two in G, where Y is the larger

partite set of C, and C is bad if C is not good.

Lemma 9 Let G be an essentially 3-edge connected graph and let C be a subgraph

of G isomorphic to K2,2g with g ≥ 2. Let x1, x2 be the two vertices of the smaller

partite set of C and let Y be the other partite set. Suppose that C is bad. Then one

of the following holds:

(i) for some i = 1, 2, all edges of C incident with xi form an essential edge-cut

of G,

(ii) there exists a subset Y1 ⊂ Y with Y1 ̸= ∅ and Y1 ̸= Y such that the graph

obtained by a secondary K2,2g-contraction at C with respect to Y1 is also es-

sentially 3-edge connected.
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Proof of Lemma 9. Let C, x1, x2, Y be as in the assumptions of Lemma 9 and

suppose that C is bad. We first claim that there exists a path P in G − E(C)

connecting some two vertices in Y .

Since C is not good, there exist three vertices y1, y2, y3 ∈ Y such that dG(y
i) ≥ 3

for i = 1, 2, 3. Since G is essentially 3-edge connected, there exists a path P1 in

G−{x1y1, x2y1} from y1 to V (C) \ {y1}. Note that P1 is a path in G−E(C). If P1

reaches y for some y ∈ Y \ {y1}, then P1 is the desired path. Thus we may assume

that P1 reaches x1 or x2. Similarly, we can take two paths P2 and P3 in G − E(C)

from y2 and y3, respectively, to x1 or x2. Since at least two of the paths P1, P2, P3

have the same end vertex in {x1, x2}, connecting them, we can find a path P in

G− E(C) between two vertices in Y .

Let y1 and y2 be the end vertices of the path P in G − E(C). Let Y1 := {y1}
and consider the graph G′ obtained from G by a secondary K2,2g-contraction at C

with respect to Y1. Let y1, y2 be the vertices of G′ obtained from Y1 and Y \ Y1,
respectively.

Suppose that (ii) does not hold, that is, there exists an essential edge-cut E1 ⊂
E(G′) of G′ with |E1| ≤ 2. If

∣∣E1 ∩ {x1y1, x2y1, x1y2, x2y2}
∣∣ = 0, then E1 is also

an essential edge-cut of G, a contradiction. If
∣∣E1 ∩ {x1y1, x2y1, x1y2, x2y2}

∣∣ = 1,

say x1y1 ∈ E1, then x1 and y1 are contained in the same component of G′ − E1

because G′ − E1 has the path x1y2x2y1, a contradiction again. Therefore |E1| = 2

and E1 ⊂ {x1y1, x2y1, x1y2, x2y2}.
Since P connects y1 and y2 in G−E(C), it also connects y1 and y2 in G′−E1. This

implies that y1 and y2 are contained in the same component of G′ − E1, and hence

E1 = {xiy1, xiy2} for some i = 1, 2. Since E1 is an essential edge-cut of G′, there

exists a component H1 of G′ − E1 with xi ∈ V (H1), y1, y2 ̸∈ V (H1) and |H1| ≥ 2.

Since we removed all pendant edges incident with xi, the edges of C incident with

xi correspond to edges in E1, and hence they form an essential edge-cut of G. Thus,

(i) holds. □

4.3 Reconstructions of a C2- or C3-contraction

In this subsection, we deal with reconstructions of a C2- or C3-contraction. The first

statement can be found in several papers, for example [3], and the second one can

be easily shown. Hence we omit the proof.

Lemma 10 Let G be a graph and let C be a cycle of length two or three in G. Let

G′ be the graph obtained from G by a C2- or C3-contraction at C. Then:

(i) If G′ has a D-system D′, then G also has a D-system D with |D| ≤ |D′|. In

particular, if D′ is strong, then D is also strong.
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(ii) For any matching M ′ in G′, there exists a matching M in G with |M | ≥ |M ′|.
In particular, α′(G) ≥ α′(G′).

4.4 Reconstructions of K2,2g-contractions

In this subsection, we deal with reconstructions of a primary or secondary K2,2g-

contraction. Indeed, we show the following lemma.

Lemma 11 Let G be a triangle-free graph and let C be a bad K2,2g for some g ≥ 2

in G. Then all of the following hold:

(i) Suppose that C satisfies condition (i) in Lemma 9. Let G′ be the graph obtained

by a primary K2,2g-contraction at C. If G′ has a D-system D′, then G also has

a D-system D with |D| ≤ |D′|.

(ii) Let G′ be the graph obtained by a secondary K2,2g-contraction at C. If G′ has

a D-system D′, then G also has a D-system D with |D| ≤ |D′|.

(iii) Let G′ be the graph obtained by a primary or secondary K2,2g-contraction at

C. Then α′(G) ≥ α′(G′).

Proof of Lemma 11.

Since (iii) is obvious, we show only (i) and (ii) at the same time. Let G′ be the

graph obtained by a primary or secondary K2,2g-contraction at C as in the statement

(i) or (ii). Suppose that G′ has a D-system D′.

Let x1, x2 be the vertices of the smaller partite set of C and let Y be the other

partite set. Since G is triangle-free, Y is an independent set. Let H ′ be the subgraph

ofG′ such that V (H ′) is the set of vertices which are contained in some circuit inD′ or

are centers of some star inD′, and E(H ′) is the set of edges in some circuit ofD′. Note

that H ′ is an even subgraph of G′, and the number of components of H ′, denoted by

ω(H ′), is at most |D′|. Notice also that, when (i) occurs, then every edge in H ′ is also

an edge in G, and when (ii) occurs, then every edge in H ′ except for x1y1, x1y2, x2y1
and x2y2 is also an edge in G, where y1 and y2 are defined in the operations in a

secondaryK2,2g-contraction. (Recall that we did not replace multiple edges ofG′ with

a single edge, except for the third operation of a secondary K2,2g-reduction.) Hence

we can regard E(H ′) for (i) and E(H ′)\{x1y1, x1y2, x2y1, x2y2} for (ii) as a subset of

edges in G. Let further H̃ be the graph with V (H̃) =
(
V (H ′)−{vC}

)
∪Y ∪{x1, x2}

and E(H̃) = E(H ′) for (i), where vC is the vertex obtained by contracting C; or

with V (H̃) =
(
V (H ′) − {y1, y2}

)
∪ Y and E(H̃) = E(H ′) \ {x1y1, x1y2, x2y1, x2y2}

for (ii). Since all edges in H̃ also appear in G in either case, we can regard H̃ as a

subgraph of G. Note that V (H̃) dominates all edges in G, and all vertices except for

(some of the) vertices in {x1, x2} ∪ Y have even degrees in H̃ (possibly the degree

might be zero).
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In the rest of the proof, we will construct an even subgraph H of G by adding

some edges of C into H̃ in such a way that the number of components of H (denoted

ω(H)) does not exceed ω(H ′), and x1 and x2 are contained in the same component

of H. Then, since all edges in G, which do not appear in G′, are incident with x1
or x2, V (H) dominates all edges in G and, since each isolated vertex v of H is also

isolated in H ′, v is a center of some star Dv in D′. Therefore the system

D = {D : D is a component of H} ∪ {Dv : v is isolated in H}

is a D-system of G such that |D| = ω(H) ≤ ω(H ′) ≤ |D′| and we are done.

Let Yodd (or Yeven) be the set of vertices y in Y having odd (or even, respectively)

degree in H̃. Note that |Yodd| + |Yeven| = 2g, that is, |Yodd| + |Yeven| is even. Notice

also that dH̃(x1) + dH̃(x2) + |Yodd| is even since H ′ is an even subgraph of G′. We

consider the following three cases, depending on the parities of the degrees of x1 and

x2 in H̃.

Case 1. Both x1 and x2 have even degree in H̃.

In this case, |Yodd| is even, and hence |Yeven| is also even.

Suppose first that Yeven ̸= ∅. Then let

H := H̃ + {x1y : y ∈ Y }+ {x2y : y ∈ Yeven}.

By the choice, every vertex of G has even degree in H. Since Yeven ̸= ∅, all vertices
in {x1, x2} ∪ Y are contained in the same component in H, and hence we have

ω(H) ≤ ω(H ′). So, H has the desired properties.

Thus, we may assume that Yeven = ∅, that is, Y = Yodd. Since H ′ is an even

subgraph of G′, there exists a path P in H̃ such that either (a) P connects a vertex

in Y1, say y
1, and xi for some i = 1, 2, say i = 2, or (b) P connects two vertices in

Y1, say y
1 and y2. Then we divide Yodd into two sets Y 1

odd and Y 2
odd so that both Y 1

odd

and Y 2
odd has even number of vertices, y1 ∈ Y 1

odd, and y
2 ∈ Y 2

odd if (b) occurs. Then

let

H := H̃ + {x1y : y ∈ Y 1
odd}+ {x2y : y ∈ Y 2

odd}.

Also every vertex of G has an even degree in H. Because of the path P in H̃, all

vertices in {x1, x2}∪Y are contained in the same circuit in H. Hence H is a desired

even subgraph. □

Case 2. One of x1 and x2 has an even degree and the other has an odd degree in

H̃.

By symmetry, we may assume that x1 has an even degree and x2 has an odd

degree in H̃. Note that |Yodd| is odd, and hence |Yeven| is also odd. Let

H := H̃ + {x1y : y ∈ Y }+ {x2y : y ∈ Yeven}.
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Then every vertex of G has an even degree in H and ω(H) ≤ ω(H ′), and hence H is

a desired even subgraph. □

Case 3. Both x1 and x2 have an odd degree in H̃.

For (i), we supposed that C satisfies condition (i) in Lemma 9, that is, for some

i = 1, 2, say i = 1, all edges of C incident with x1 form an essential edge-cut of G.

Then by the construction, one component, say R, of H̃ contains x1 but does not

contain any vertices in Y ∪ {x2}. Then x1 is the unique vertex of odd degree in R,

a contradiction. Thus, in this case, we need to consider only (ii), and we performed

a secondary K2,2g-contraction at C.

Case 3.1. Yeven = ∅.
Since y1 has an even degree inH ′, as in Case 1, there exists a path in H̃ connecting

two vertices in Y1, say, y
1 and y2. Then we divide Yodd into two sets Y 1

odd and Y 2
odd

such that both Y 1
odd and Y 2

odd have odd number of vertices and yi ∈ Y i
odd for i = 1, 2.

Then let

H := H̃ + {x1y : y ∈ Y 1
odd}+ {x2y : y ∈ Y 2

odd}.

Then H is a desired even subgraph. □

Case 3.2. Yeven ̸= ∅ and Yodd ̸= ∅.
Since |Yodd| is even, we can divide Yodd into two sets Y 1

odd and Y
2
odd such that both

Y 1
odd and Y 2

odd have odd number of vertices. Let

H := H̃ + {x1y : y ∈ Y 1
odd ∪ Yeven}+ {x2y : y ∈ Y 2

odd ∪ Yeven}.

Then H is a desired even subgraph. □

Case 3.3. Yodd = ∅.
In this case, since x1 has odd degree in H̃ and we performed a secondary K2,2g-

contraction at C, exactly one of the edges x1y1 and x1y2 is used in H ′. By symmetry,

we may assume that x1y1 is used in H ′. Similarly, exactly one of the edges x2y1 and

x2y2 is used in H ′. Let D1 be the circuit in H ′ using the edge x1y1. If y2 is neither

contained in any circuit of D′ nor a center of any star in D′, then every edge of G′

incident with y2 are dominated by some vertex in H ′, and hence for some y ∈ Y \Y1,

H := H̃ + {xiy′ : i = 1, 2, y′ ∈ Y \ {y}}

is the desired even subgraph of G. So we may assume that y2 is passed by some

circuit D2 ∈ D′ or is a center of some star D2 ∈ D′.

When D1 = D2, there exists a path P in H̃ connecting y2 and a vertex in

{x1, x2, y1}. Let y ∈ Y \ Y1 such that P starts from y in H̃. When D1 ̸= D2, then

we let y ∈ Y − Y1 be an arbitrary vertex. Let

H := H̃ + {xiy′ : i = 1, 2, y′ ∈ Y \ {y}}.

11



Then H is an even subgraph of G. If D1 = D2, then since H also has a path P , all

vertices in {x1, x2} ∪ Y are contained in the same component of H. Thus, we have

ω(H) ≤ ω(H ′). On the other hand, if D1 ̸= D2, then {x1, x2}∪Y are contained in at

most two components of H. Since x1, x2, y1, y2 are contained in the two components

D1 and D2 of H ′, we also have that ω(H) ≤ ω(H ′). In either case, H is the desired

even subgraph. This completes the proof of Lemma 11. □

5 Lemmas

We use the following theorem in the proof of Theorem 7. Recall that a graph is

called even if all its vertices have even degree.

Theorem 12 (Jackson and Yoshimoto [13]) LetG be a 3-edge connected graph

of order n. Then G has a spanning even subgraph in which every component has at

least min{5, n} vertices.

In the proof of Theorem 7, we will also often use the following observation.

Fact 13 Let C ≃ C5 be a subgraph of a graph G. Then for any edge uv incident with

a vertex of C, say u ∈ V (C) and v ̸∈ V (C), there exists a matching in G[V (C)∪{v}]
with three edges.

The next lemma concerns the existence of a matching with two or three edges in

a circuit. A graph obtained from a star by replacing all edges with multiple edges is

called a flower.

Lemma 14 Let D be a circuit of order at least four (D might possibly have multiple

edges). Then:

(i) D has a matching with two edges unless D is a flower,

(ii) If D has at least five vertices and contains no cycle of length two or three, then

(α) for all u ∈ D, D− u has a matching with two edges, unless D ≃ K2,2g for

some g ≥ 2,

(β) D has a matching with three edges, unless D ≃ C5 or D ≃ K2,2g for some

g ≥ 2.

Proof. IfD contains a cycle of length at least six, then we can easily find a matching

with three edges in D, and a matching with two edges in D − u for each u ∈ V (D).

Then we may assume that D contains no cycle of length at least six. If D has a cycle

of length five, D has a matching with two edges. Moreover, if D contains no cycle

12



of length two or three, then by Fact 13, D has a matching with at least three edges,

or D ≃ C5. So all the statements in (i) and (ii) hold.

Thus, we may assume that D has no cycle of length at least five. Suppose next

that D has a cycle C of length four, say, C = x1x2x3x4. Clearly, D has a matching

with two edges, so the statement (i) holds. Suppose that D contains no cycle of

length two or three. If there exists an edge in D−{x1, x2, x3, x4}, then we can find a

matching with three edges, and hence (ii-α) and (ii-β) hold. So we may assume that

the cycle x1x2x3x4 dominates all edges in D. On the other hand, if some vertex y in

D−{x1, x2, x3, x4} has consecutive neighbors in C, we can find a cycle of length five,

a contradiction. This implies that for any vertex y in D − {x1, x2, x3, x4}, ND(y) =

{x1, x3} or ND(y) = {x2, x4}. If there exist two vertices y1, y2 in D− {x1, x2, x3, x4}
with ND(y1) = {x1, x3} and ND(y2) = {x2, x4}, then y1x1x2y2x4x3y1 is a cycle of

D, a contradiction. Thus, we may assume that ND(y) = {x1, x3} for any vertex y

in D − {x1, x2, x3, x4}, and hence ND(x1) = V (D) \ {x1, x3}. Since D is a circuit,

|V (D) \ {x1, x3}| is even. Thus, D ≃ K2,2g, where 2g = |V (D) \ {x1, x3}|.
Next, we assume that D has no cycle of length at least four. Then D contains a

cycle of length two or three, and hence it is enough to show only the statement (i).

Now suppose that D has no matching with two edges. If D has a cycle C of length

three, say, C = x1x2x3, then there exists an edge yxi (y ̸= x1, x2, x3 ) in D for some i,

say i = 1, since D is connected and D has at least four vertices. Then yx1 and x2x3
form a matching with two edges, a contradiction. So we may assume that D has no

cycle of length at least three, that is, D consists only of cycles isomorphic to C2. If

there exist two vertex disjoint cycles isomorphic to C2 in D, then taking one edge

from each cycle, we obtain a matching with two edges. Thus, any two cycles share a

vertex. This implies that D is a flower. This completes the proof of Lemma 14. □

6 Proof of Theorem 7

We use induction on |G|. When |G| ≤ 5, we can easily find a desired D-system.

Thus we may assume that |G| ≥ 6 and for all graphs with at most |G| − 1 vertices

the statement is true.

We divide the proof into five steps. In the first step (Subsection 6.1) we con-

sider some contractions defined in Section 4.1 as a preliminary for C5-contractions

in the second step (Subsection 6.2), where, in the contracted graph, we also con-

struct a strong D-system with “bounded number” of components. In the remaining

three steps (Subsections 6.3 to 6.5), we will reconstruct all contracted C5s one by

one. During the reconstruction, in Subsection 6.4 we construct a “sufficiently large”

matching, which will be in Subsection 6.5 completed a matching satisfying the state-

ment of Theorem 7.
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6.1 C2- or C3-contractions and K2,2g-contractions

In this subsection, we show the following two claims. Note that the first one is

obvious by Lemmas 10 (i) and (ii).

Claim 1 G has no cycle isomorphic to C2 or C3, that is, G is simple and triangle-free.

Claim 2 G has no bad K2,2g for any g ≥ 2.

Proof. Suppose not and let C be a bad K2,2g for some g ≥ 2. Let x1, x2 be the

vertices of the smaller partite set of C and let Y be the other partite set. By Lemma

9, C satisfies one of properties (i) and (ii) in Lemma 9. When (i) holds in Lemma 9,

let G′ be the graph obtained by a primary K2,2g-contraction at C. Then G′ is also

essentially 3-edge connected by Fact 8. On the other hand, when (ii) holds in Lemma

9, there exists a subset Y1 ⊂ Y with Y1 ̸= ∅ and Y1 ̸= Y such that the graph G′

obtained by a secondary K2,2g-contraction at C with respect to Y1 is also essentially

3-edge connected. Note that in either case, |V (G′)| < |V (G)|, so by the induction

hypothesis, G′ has a D-system D′ such that |D′| ≤ max{2
5

(
α′(G′) + 1

)
, 1}. By

Lemmas 11 (i)–(iii), G also has aD-systemD such that |D| ≤ |D′| ≤ max{2
5

(
α′(G′)+

1
)
, 1} ≤ max{2

5

(
α′(G) + 1

)
, 1}. Thus, we may assume that G has no bad K2,2g for

any g ≥ 2. □

6.2 C5-Contractions and a strong D-system

In this subsection, we contract subgraphs isomorphic to C5 which are bad in the

following sense. For a subgraph C of G with C ≃ C5, C is called normal if C has

a neighbor outside of C that has degree one or two in G; otherwise C is abnormal.

Now we consider the following contractions.

Let C be a set of pairwise vertex-disjoint cycles C of G such that C is an abnormal

C5. Take such a set C so that |C| is as large as possible. Now we perform C5-

contractions of each C ∈ C and let G1 be the resulting graph. By Fact 8, G1 is also

essentially 3-edge connected (but G1 might have multiple edges). In addition, we

repeat C2- or C3-contractions to G1 until there does not exist a subgraph isomorphic

to C2 or C3. Let G′
1 be the graph obtained by these operations. Again by Fact 8,

G′
1 is also essentially 3-edge connected.

Let G′′
1 be the graph obtained from G′

1 by removing all pendant edges, and sup-

pressing all vertices of degree two in G′
1. Since G′

1 is essentially 3-edge connected,

G′′
1 is 3-edge connected. Thus, by Theorem 12, G′′

1 has a spanning even subgraph H ′′
1

in which each component has at least min{5, |G′′
1|} vertices.

Let D′
1 be the set of circuits of G′

1 corresponding to components of H ′′
1 . In other

words, for each D′ ∈ D′
1, there exists a component D′′ of H ′′

1 such that D′′ is the

14



x1x1x2 x2

x3 x3 x4x4

x5 x5

Case a) Case b)

Figure 2: The circuit D̃.

circuit obtained from D′ by suppressing all vertices of degree two in G′
1. Since G

′
1 is

essentially 3-edge connected, D′
1 is a strong D-system in G′

1.

Next we consider reconstructions of C2’s and C3’s. By recursively applying

Lemma 10 to D′
1 and G′

1, we obtain a strong D-system D1 of G1.

6.3 Reconstruction of good C5s and classification of bad C5s

Now we consider reconstructions of C5s. Some vertices obtained by a contraction of

a C5 could be reconstructed without increasing the number of circuits in D1. We

call such a C5 good ; otherwise it is a bad C5. More precisely, we define a good C5

and a bad C5, respectively, as follows.

Let C = x1x2 . . . x5 ∈ C and let D be a circuit in D1 which contains the vertex

obtained by contraction of C. Now we regard D as the subgraph in G induced by all

edges in D. Although xi’s might have odd degree in D, all other vertices of D have

even degree in D. Depending on the parities of degrees of xi’s in D, we consider the

following four cases:

a) All xi’s have even degrees in D.

b) Two consecutive xi’s have odd degrees and others have even.

c) Exactly two xi’s but not consecutive have odd degrees.

d) Four xi’s have odd degrees and the fifth one has even degree.

Note that in Cases a) and b), the following D̃ is also a circuit in the graph

obtained from G1 by reconstruction of C:

D̃ :=

{
D + E(C) if Case a) occurs,

D + E(C)− {x1x2} if Case b) occurs and x1 and x2 have odd degrees.

See Figure 2. Thus, in Case a) and b) we can reconstruct an abnormal C ≃ C5 with-

out changing the number of circuits in D1. Note that all edges in G are dominated

by
(
D1 − {D}

)
∪ {D̃}. Therefore, such a C5 is good.
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x2

x3 x4

x5

A bad C5 of Type I-i

x1
x2
x3 x4

x5

A bad C5 of Type I-ii

x1

v x2
x3 x4

x5

A bad C5 of Type II-i

x1

x2
x3 x4

x5

A bad C5 of Type 0

x1

v

Figure 3: The circuit D̃ in Case c).

Now we consider the remaining two cases. Let C = x1 . . . x5 be an abnormal

C ≃ C5 with Case c), and assume that x1 and x4 have odd degrees in D and others

have even. In this case, we first consider the even subgraph

D∗ := D + {x1x2, x2x3, x3x4}

of the graph obtained from G1 by reconstruction of C. If the degree of x5 in G is

two, then letting D̃ = D∗, we can reconstruct C without changing the number of

circuits in D1. Therefore, such a C5 is good.

Now we assume that the degree of x5 in G is at least three. We also consider

two cases depending on the degree of x5 in D∗. If x5 has degree zero in D, then

we let such C be a bad C5 of Type I-i. See the left side of Figure 3. In this case,

let D̃ = D∗. Note that D̃ does not pass through the vertex x5. We call the vertex

x5 uncovered and the two edges x1x5 and x4x5 D-dominated edges by x5. Next, we

suppose that x5 has a degree at least two in D∗. If D∗ has only one component, then

we let D̃ = D∗ and we can use D̃ as a circuit of G, so C is good ; otherwise, C is bad.

Suppose C is bad in this sense. Then D∗ has exactly two components such that

one of them contains all vertices in V (C) \ {x5} and the other contains x5. Suppose

further that the first one consists of only five vertices, say v, x1, x2, x3 and x4, and v

is not a contracted vertex from a bad C5. If v is incident with a vertex outside of C

and of degree one or two in G, then we call such C ≃ C5 a bad C5 of Type 0, say

that the circuit vx1x2x3x4 is generated from C, and let D̃ := D∗. See the left middle

of Figure 3. Otherwise, that is, if v is not incident with a vertex outside of C and of

degree one or two in G, then we call such C ≃ C5 a bad C5 of Type I-ii, and we let

D̃ := D + E(C).

See the right middle of Figure 3. Moreover, we call the vertex v uncovered, and the

two edges vx1 and vx4 are D-dominated by v. For other case, that is, if the circuit

containing V (C)− {x5} has at least six vertices, or if v is a vertex contracted from

a bad C5, then we say that C is a bad C5 of Type II-i, and we let D̃ = D∗. See the

right side of Figure 3.

Finally, let C be an abnormal C5 with Case d), and assume that xi has odd degree

in D for all 1 ≤ i ≤ 4. Then we consider the subgraph

D∗ := D + {x2x3, x1x5, x4x5}
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x2 x5

A good C5

x1

x3 x4

x2 x5

A bad C5 of Type I-iii

x1

x3 x4

x2 x5

A bad C5 of Type II-ii

x1

x3 x4

Figure 4: The circuit D̃ in Case d).

of the graph obtained from G1 by reconstruction of C. If D∗ has only one component,

then we let D̃ = D∗ and we can use D̃ as a circuit, so C is good. See the left side of

Figure 4. Suppose now that D∗ has two components such that one of them contains

x2 and x3 and the other contains x1, x4 and x5. Then we consider the following

subgraph

D̃ := D + {x1x2, x3x4}

of the graph obtained from G1 by reconstruction of C. Since D∗ has two components,

there exist a path connecting x2 and x3 and a path connecting x1 and x4 in D.

Therefore, D̃ has at most two components. If the degree of x5 in G is two, then we

can also use D̃ as a circuit of G, so C is good. Suppose that the degree of x5 in G is

at least three. Similarly to Case c), we consider two cases depending on the degree

of x5 in D̃. When x5 has degree zero in D̃, then we call such C a bad C5 of Type I-iii.

Also x5 is uncovered and the edges x1x5 and x4x5 are D-dominated by x5. See the

middle of Figure 4. If x5 has degree at least two in D̃ and D̃ consists of two circuits,

then such a C5 is said to be a bad C5 of Type II-ii ; otherwise C is good. Note that

when C is a bad C5 of Type II-ii, D̃ has exactly two components such that one of

them contains V (C) \ {x5} and the other contains x5. Notice also that the first one

has at least six vertices. See the right side of Figure 4.

For an abnormal C ≃ C5, we say that C is a bad C5 of Type I if C is of Type I-i

or I-ii or I-iii, and C is a bad C5 of Type II if C is of Type II-i or II-ii.

In addition, for an abnormal C ≃ C5, the operation to get D̃ from D ∈ D1 which

contains the vertex contracted from C is also called reconstruction (of C). Note that

after reconstruction of all bad C5, we obtain a set of circuits of G that dominates all

edges in G except for those connecting two uncovered vertices. By the definition, we

can reconstruct all good C5s without increasing the number of circuits in D1.

Let G2 and D2 be the graph and the D-system of G2 obtained from G1 and D1 by

reconstructing all good C5s and all bad C5s of Type 0. We call a circuit in D2 that is

not generated from a bad C5 of Type 0 original. Note that the set of original circuits

in D2 has a one-to-one correspondence to D1, also to D′
1, since any generated circuit

from a bad C5 of Type 0 corresponds to a subcircuit of a circuit in D1 of length two,

so it disappears after C2-contraction. Notice also that D2 is a strong D-system of

G2.
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It is easy to show the following claim.

Claim 3 If D2 has at least two original circuits, then each D ∈ D2 with D ̸≃ C5

has at least five vertices even after any sequence of C2- and C3-contractions and

suppressing.

Proof. Suppose that some circuit D ∈ D2 with D ̸≃ C5 has at most four vertices

after a sequence of C2- and C3-contractions and suppressing. Since D ̸≃ C5, D is

not generated from a bad C5 of Type 0, and hence there exists a circuit D′ in D′
1

that corresponds to D. Since D has at most four vertices after a sequence of C2-

and C3-contractions and suppressing, D′ also has at most four vertices. Since D′

corresponds to some component of H ′′
1 , D

′ has at least min{5, |G′′
1|} vertices. This

implies that |D1| = |D′
1| = ω(H ′′

1 ) = 1, where ω(H ′′
1 ) is the number of components of

H ′′
1 . Hence D1 has only one circuit, which implies that D2 has exactly one original

circuit. □

6.4 Reconstruction of bad C5s of Type II and construction

of a matching

Let G3 be the graph obtained from G2 by reconstructing all bad C5s of Type II.

Recursively applying the reconstructions in Section 6.3, we get a strong D-system

D3 of G3. However, |D3| might be larger than |D2|. In this subsection, we will show

the existence of a matching in G3 having many edges comparing with the number of

circuits in D3. (Actually, we will show Claim 4.)

For a circuit F ∈ D3 and a matching M in G3, we call F special for M if F

contains a contracted vertex u from a bad C5 of Type I and (i) no edge incident with

u is contained in M , or (ii) F ≃ K2,2g for some g ≥ 2, u has degree 2g in F , and

|E(F ) ∩M | = 1. For a matching M in G3, we define the function fM from D3 to{
3
2
, 2, 5

2

}
as follows; for every circuit F in D3,

fM(F ) =



3
2

if F is special for M ,

2 if F contains a contracted vertex from a bad C5 of Type I

and F is not special for M ,
5
2

otherwise.

Claim 4 There exists a matching M3 in G3 such that∑
F∈D3

fM3(F ) ≤ |M3|+ 1.

Proof. Let

D1
2 := {D ∈ D2 : D contains no contracted vertex from a bad C5 of Type II},

and D2
2 := D2 −D1

2.
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We define the mapping f from D3 to {2, 5
2
} as follows; for every circuit F in D3,

f(F ) =

{
2 if F contains a contracted vertex from a bad C5 of Type I,
5
2

otherwise.

Note that fM(F ) ≤ f(F ) for each matching M of G3 and each circuit F ∈ D3.

Notice that every circuit D in D1
2 is also a circuit in D3. For all D ∈ D1

2, let GD

be the subgraph of G3 induced by V (D) ∪ {v ∈ NG3(D) : dG3(v) = dG(v) = 1 or 2}.
We will show the following subclaim.

Subclaim 1 For every D ∈ D1
2, there is a matchingMD in GD with at least f(D)−1

edges such that
∪

D∈D1
2
MD is also a matching in G3, and

∑
D∈D1

2

|MD| ≥


∑

D∈D1
2
f(D)− 1 if D2 has only one original circuit and

that circuit lies in D1
2,∑

D∈D1
2
f(D) otherwise.

On the other hand, let D ∈ D2
2. Note that D is divided into more than one circuit

through reconstructions of bad C5s of Type II. Let FD be the set of circuits F in D3

such that E(F )∩E(D) ̸= ∅. Note that D3 = D1
2 ∪

∪
D∈D2

2
FD. We will also show the

following.

Subclaim 2 For every D ∈ D2
2, there is a matching MD in G3

[∪
F∈FD

V (F )
]
such

that

|MD| ≥

{∑
F ∈ FD

fMD
(F )− 1 if D is the only original circuit in D2,∑

F ∈ FD
fMD

(F ) otherwise.

Suppose that both Subclaims 1 and 2 hold. ThenM3 :=
∪

D∈D2
MD is a matching

in G3. Moreover, since the first case in the inequality in Subclaim 1 and the first

case in the inequality in Subclaim 2 do not occur at the same time, we have

|M3| ≥
∑
D∈D1

2

|MD|+
∑
D∈D2

2

|MD|

≥
∑
D∈D1

2

f(D) +
∑
D∈D2

2

∑
F∈FD

fMD
(F )− 1

≥
∑
F∈D3

fM3(F )− 1,

which completes the proof of Claim 4. Therefore, it suffices to prove Subclaims 1

and 2.
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Proof of Subclaim 1. Recall that for D ∈ D1
2, D is also a circuit in D3 since

D has no contracted vertex from a bad C5 of Type II. Recall also that GD is the

subgraph of G3 induced by V (D) ∪ {v ∈ NG3(D) : dG3(v) = dG(v) = 1 or 2}.
We will first show that for all D ∈ D1

2 with D ̸≃ C5, there is a matching MD in

GD with |MD| ≥ f(D)− 1 if D is the only original circuit in D2, and |MD| ≥ f(D)

otherwise. Let D ∈ D1
2 with D ̸≃ C5.

Suppose first that D is the only original circuit in D2. If D contains a contracted

vertex from a bad C5 of Type I, then D ⊂ GD contains a matching MD with |MD| =
1 = f(D) − 1. On the other hand, if D contains no contracted vertex from a bad

C5 of Type I, then D is also a circuit in G, and hence D is not a flower by Claim 1.

Then we can find a matching MD in D with |MD| = 2 > f(D)− 1 by Lemma 14 (i).

So we may assume that D2 has at least two original circuits.

By Claim 3, D has at least five vertices and we can find a matching with two

edges in D by Lemma 14 (ii). Hence if D has a contracted vertex from a bad C5 of

Type I, then we can find a matching MD with at least f(D) edges in D, and we are

done. So we may assume that D has no contracted vertex from a bad C5 of Type I,

and hence D is also a circuit in G. Hence D contains no cycle of length two or three

by Claim 1. By Lemma 14 (iii), if D ̸≃ K2,2g with g ≥ 2, then we can find a matching

with three edges, and we are done. (Recall that D ̸≃ C5.) So we may also assume

that D ≃ K2,2g with g ≥ 2. By Claim 2, D is good. Thus, D has only at most four

vertices of degree at least three in G. This implies that after suppressing all vertices

of degree two, D has only at most four vertices, but this contradicts Claim 3. Thus,

for all D ∈ D1
2 with D ̸≃ C5, there is a matching MD in GD with |MD| ≥ f(D)− 1

if D is the only original circuit in D2, and |MD| ≥ f(D) otherwise.

We next consider all D ∈ D1
2 that are isomorphic to C5. Note that D has no

contracted vertex from a bad C5 of Type II. If D is generated from a bad C5 of Type

0, then by the definition, D has a neighbor of degree one or two in G. Otherwise D

is vertex-disjoint from any C ∈ C. Therefore, if D is abnormal, this contradicts the

maximality of |C|. Thus, D is normal. In either cases, D has a neighbor of degree

one or two in G.

If D has a neighbor of degree one, then by Fact 13, there exist three edges forming

a matching in GD −
∪

D′∈D1
2\{D} V (GD′) and we are done. Therefore, it suffices to

consider only the set, say C2, of circuits D in D1
2 such that D ≃ C5, D has no vertex

contracted from a bad C5 and D is adjacent with a vertex of degree two.

Let R be the bipartite graph such that one vertex set of the bipartition of R is C2,

the other one is the set of vertices of degree two in G3, and D ∈ C2 is adjacent with

v in R if and only if v is adjacent with a vertex of D in G3. By the definition, each

D ∈ C2 has a degree at least one in R. Let R′ be a component of R containing at

least one vertex in C2. If R
′ has only one vertex in C2, say D ∈ C2, then D∪

{
φ(D)

}
has a matching in G3 with three edges, where φ(D) is a vertex of degree two in G3
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which is a neighbor of D in R. (Note that the matching is also in GD.) So we may

assume that |C2 ∩ V (R′)| ≥ 2, and let
−→
T be a rooted spanning tree of R′ with root

D∗ for some D∗ ∈ C2. Since each D ∈ C2 has a vertex incident with a vertex of

degree two in G3, each D ∈ C2 ∩ V (R′) has a parent φ(D) in
−→
T , except for D = D∗.

Let φ(D∗) = ∅. By Fact 13, D ∪ {φ(D)} has a matching MD in G3 with three edges

for each D ∈ C2 ∩ V (R′) with D ̸= D∗, and with two edges for D = D∗. Then∑
D∈C2∩V (R′)

|MD| ≥ 3
(
|C2 ∩ V (R′)| − 1

)
+ 2

= 3|C2 ∩ V (R′)| − 1

=
5

2
|C2 ∩ V (R′)|+ 1

2
|C2 ∩ V (R′)| − 1

≥
∑

D∈C2∩V (R′)

f(D).

Considering all components of R, this completes the proof of Subclaim 1. □

Proof of Subclaim 2. Let D ∈ D2
2. Recall that FD is the set of circuits F in D3

such that E(F ) ∩ E(D) ̸= ∅. For a circuit F ∈ FD, let DF be the subcircuit of D

such that E(DF ) = E(F ) ∩ E(G2).

By the definition, each contracted vertex from a bad C5 of Type II is a cut vertex

of D (otherwise we can reconstruct such a vertex without increasing the number of

circuits, so it is good). Therefore D has a tree-like structure. More precisely, let T

be the graph such that the vertex set of T is FD and two vertices F and F ′ are joined

by an edge in T if and only if DF and DF ′ share a contracted vertex from a bad C5

of Type II. Note that T is a tree.

Let F ∈ FD be a leaf of T . Note that DF has exactly one contracted vertex from

a bad C5 of Type II, say u. Let C = x1x2 . . . x5 be the bad C5 in G3 corresponding

to u. Suppose that DF has only two vertices, and let v be the (only) vertex in

V (DF ) \ {u}. If |F | = 2, then v is a contracted vertex from a bad C5 of Type I since

G is simple. Otherwise, that is, if |F | > 2, then C is a bad C5 of Type II-i by the

definition, and we may assume that F consists of five vertices x1, x2, x3, x4 and v.

Then, by the definition of Type II-i, v has to be a contracted vertex from a bad C5

of Type I. This implies that if |DF | = 2, then F contains a contracted vertex from a

bad C5 of Type I.

Let L be the set of leaves of T , and let L′ ⊂ L be the set of circuits F ∈ FD

such that DF contains at least three vertices. By the above fact, each component in

L \ L′ has a contracted vertex from a bad C5 of Type I, and hence at least |L \ L′|
circuits in FD contain a contracted vertex from a bad C5 of Type I. Thus, for every
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matching M in G3,∑
F ∈ FD

fM(F ) ≤
∑

F ∈ FD

f(F )

≤ 5

2

(
|T | − |L \ L′|

)
+ 2|L− L′|

=
5

2
|T | − 1

2
|L|+ 1

2
|L′|. (1)

Let T ′ = T − L′ and let I be a maximum independent set of T ′. Note that

|I| ≥ 1
2
|T ′|, since T ′ is bipartite. Taking one edge from DF for each F ∈ I, we can

find a matching M ′ in D of order at least |I|. Moreover, for each F ∈ L′, DF has

an edge which is not incident with the vertex u, where u is the unique contracted

vertex in DF from a bad C5 of Type II. Therefore, in D, we can find a matching M̃

with at least |I|+ |L′| edges.
Let u be a vertex in D that contracted from a bad C5 of Type II, and let C be

the bad C5 in G3 corresponding to u. By Fact 13, for each edge e in D incident with

u, we can find two edges in C which together with e form a matching in G3. This

implies that for each contracted vertex in D from C that is a bad C5 of Type II, we

can add two edges into the matching M̃ through the reconstruction of C. Since D

has |T | − 1 contracted vertices from bad C5s of Type II, there exists a matching MD

in G3

[∪
F∈FD

V (F )
]
such that

|MD| ≥ |I|+ |L′|+ 2
(
|T | − 1

)
≥ 1

2
|T ′|+ |L′|+ 2|T | − 2

=
5

2
|T |+ 1

2
|L′| − 2.

If D is the only original circuit in D2, then by the inequality (1),

|MD| ≥ 5

2
|T |+ 1

2
|L′| − 2

≥ 5

2
|T |+ 1

2
|L′| − 1

2
|L| − 1

≥
∑

F ∈ FD

fMD
(F )− 1,

and hence MD is a desired matching. On the other hand, if |L| ≥ 4, then

|MD| ≥ 5

2
|T |+ 1

2
|L′| − 2

≥ 5

2
|T |+ 1

2
|L′| − 1

2
|L|

≥
∑

F ∈ FD

fMD
(F ),
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and we are also done. Thus, we may assume that D2 has at least two original circuits

and |L| ≤ 3.

Moreover, we may also assume that

(T0) D has no matching with at least 1
2
|T ′|+ |L′|+ 1 edges, and if |L| = 3, then D

has no matching with at least 1
2
|T ′|+ |L′|+ 1

2
edges.

This also implies the following facts.

(T1) T ′ has no independent set of order at least 1
2
|T ′|+ 1.

(T2) If |L| = 3, then T ′ has no independent set of order at least 1
2

(
|T ′|+1

)
, that is,

T ′ is a balanced bipartite graph.

(T3) For each F ∈ L′, DF − {u} has no matching with at least two edges, where u

is the unique contracted vertex from a bad C5 of Type II.

Suppose first that |L| = 3. Let F ∗ ∈ FD such that the degree of F ∗ in T is exactly

3. Note that DF ∗ has at least three vertices. Let T 1, T 2 and T 3 be the three paths in

T ′ − F ∗ (possibly T i = ∅ for some i, which could happen when F ∗ is adjacent with

a member of L′ in T ). By (T2), T ′ is a balanced bipartite graph, and hence at least

one of the paths T 1, T 2, T 3, say, T 1, has odd number of vertices. Since T ′ − T 1 is

a path of odd order, T ′ − T 1 has an independent set I0 with |I0| ≥ 1
2
|T ′ − T 1| + 1

2
.

Similarly, T 1 has an independent set I1 with |I1| ≥ 1
2
|T 1|+ 1

2
. Since DF ∗ has at least

three vertices, even if F ∗ ∈ I0, we can take an edge from DF for each F ∈ I0 ∪ I1
so that such edges form a matching M ′ in D. Adding one edge from DF for each

F ∈ L′, we can obtain a matching in D with

|M ′|+ |L′| = |I0|+ |I1|+ |L′| ≥ 1

2
|T ′|+ |L′|+ 1

edges, contradicting (T0). Thus, we may assume that |L| = 2, that is, T is a path.

Let T = F 1F 2 . . . F l.

A circuit is called redundant if it is reduced to one vertex by a sequence of C2-

or C3-contractions. If for all circuits F ∈ FD, DF is redundant, then D is also

redundant, contradicting Claim 3 and the fact that |D2| ≥ 2. Hence there exists a

circuit F ∗ ∈ FD such that DF ∗ is not redundant.

Suppose also that there exists a circuit F ∗∗ ∈ FD such that F ∗∗ ̸= F ∗ and DF ∗∗

is not redundant. We may assume that F ∗ = F i and F ∗∗ = F j for some i < j. Let

T 1 = F 1 · · ·F i, T 2 = F i · · ·F j and T 3 = F j · · ·F l. If |T 1| is odd, then we can find

a matching in
∪

F∈V (T 1)DF with at least 1
2

(
|T 1| + 1

)
edges. On the other hand, if

|T 1| is even, then we can find a matching in
∪

F∈V (T 1)DF with at least 1
2
|T 1| edges

if F 1 ̸∈ L′, and with at least 1
2
|T 1|+ 1 edges if F 1 ∈ L′. In either case,

∪
F∈V (T 1)DF

has a matching M1 with at least 1
2

(
|T 1| + |L′ ∩ T 1|

)
edges. Similarly,

∪
F∈V (T 2)DF
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and
∪

F∈V (T 3)DF have matchings M2 and M3 with at least 1
2
|T 2| edges and with at

least 1
2

(
|T 3|+ |L′∩T 3|

)
edges, respectively. Since both F i and F j are not redundant,

both have a cycle of length at least 4. Therefore, we can take such matchings M1,

M2 andM3 so thatM1∪M2∪M3 is also a matching with |M1|+ |M2|+ |M3| edges.
Therefore, G3

[∪
F∈FD

V (F )
]
has a matching with at least

1

2

(
|T 1|+ |L′ ∩ T 1|

)
+

1

2
|T 2|+ 1

2

(
|T 3|+ |L′ ∩ T 3|

)
+ 2

(
|T | − 1

)
=

1

2

(
|T |+ 2 + |L′|

)
+ 2|T | − 2

=
5

2
|T |+ 1

2
|L′| − 1

=
5

2
|T |+ 1

2
|L′| − 1

2
|L|

edges, and we are done by the inequality (1). Thus, we may also assume that F ∗ is

the only circuit in FD such that DF ∗ is not redundant. Note that after C2- or C3-

contractions and suppressing all vertices of degree 2, DF ∗ has at least five vertices

by Claim 3.

Suppose that DF ∗ ̸≃ K2,2g for any g ≥ 2. Then by Lemma 14 (ii) and by (T3),

DF ∗ ̸∈ L′. Recall that I is a maximum independent set of T ′. Then |I| ≥ 1
2
|T ′|. We

can take two edges from DF ∗ when F ∗ ∈ I and one edge from DF ∗ when F ∗ ̸∈ I, such

that they, together with an edge in DF for each F ∈ I, form a matching. This implies

that there exists a matching in D with at least 1
2
|T ′|+ |L′|+ 1 edges, contradicting

(T0). Thus, we obtain that DF ∗ ≃ K2,2g for some g ≥ 2.

Let F, F ′ be circuits in FD such that DF and DF ′ share a contracted vertex, say

u, from a bad C5 of Type II. By the definition of the reconstruction of a bad C5

of Type II, exactly one of DF and DF ′ does not change through the reconstruction

of Cu, where Cu is the bad C5 of Type II corresponding to u. Since D has |T | − 1

contracted vertices from bad C5s of Type II, at least one circuit in FD, say F , is also

a circuit in D. So, F = DF . Since F ∗ is the unique circuit in FD such that DF ∗

is not redundant, we have that F = DF is redundant or F = F ∗ ≃ K2,2g for some

g ≥ 2.

If F = F ∗ and F contains no contracted vertex from a bad C5 of Type I, then

F is also a circuit in G. Then by Claim 2, F is a good K2,2g. However, after C2-

and C3-contractions and suppressing all vertices of degree 2, D has only at most four

vertices in G′′
1, contradicting Claim 3 and the fact |D| ≥ 2. Thus, if F = F ∗, then F

contains a contracted vertex from a bad C5 of Type I. On the other hand, even when

F is redundant, F contains a contracted vertex from a bad C5 of Type I, since G is

simple and triangle-free by Claim 1. In either case, F contains a contracted vertex

from a bad C5 of Type I, say u.
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We will show that

there exists a matching M̃ in D with at least
1

2
|T ′|+ |L′|+ 1

2
edges

such that (i) M̃ does not contain any edge incident with u or (2)

(ii) F = F ∗ ≃ K2,2g and u has degree 2g in F and |E(M̃) ∩ E(F )| = 1.

This implies that after reconstructing all contracted vertices in D from bad C5s of

Type II, adding some edges into M̃ , we can find a matchingMD in G3[
∪

F ′∈FD
V (F ′)]

with at least

1

2
|T ′|+ |L′|+ 1

2
+ 2

(
|T | − 1

)
=

5

2
|T |+ 1

2
|L′| − 3

2

=
5

2

(
|T | − |L \ L′|

)
+ 2

(
|L \ L′| − 1

)
+

3

2

edges. (Recall that |L| = 2.) By the choice (2) and the definition, F is special for

MD, and hence
∑

F ′ ∈ FD
fMD

(F ′) ≤ 5
2

(
|T | − |L \ L′|

)
+ 2

(
|L \ L′| − 1

)
+ 3

2
. This

completes the proof of Subclaim 2.

In the rest of the proof of Subclaim 2, we will show (2). Recall that T =

F 1F 2 · · ·F l. We may assume that F = F l if F ∈ L′. Let F i = F ∗. Let T 1 = F 1 · · ·F i

if F 1 ̸∈ L′; otherwise let T 1 = F 2 · · ·F i. Similarly, let T 2 = F i · · ·F l if F l ̸∈ L′;

otherwise T 2 = F i · · ·F l−1. Note that if F ∗ = F i = F l, then T 2 = ∅.
Since both T 1 and T 2 is a path, for j = 1, 2, we can find a matching M j in∪

F ′∈V (T j)DF ′ with at least 1
2
|T j| edges. Since DF i = DF ∗ is not redundant, DF i has

a cycle of length at least 4, and hence we can choose M1 and M2 such that M1∪M2

is also a matching with |M1| + |M2| edges. Since we can take an edge from each

circuit F ′ in L′ which is not incident with the contracted vertex from bad C5 from

Type II, there exists a matching in D with

|M1|+ |M2|+ |L′| ≥ 1

2
|T 1|+ 1

2
|T 2|+ |L′|

=
1

2
|T ′|+ |L′|+ 1

2

edges. Moreover, if |M1| ≥ 1
2
|T 1| + 1

2
, then together with M2, it forms a matching

of D with at least 1
2
|T 1|+ 1

2
+ 1

2
|T 2| ≥ 1

2
|T ′|+1 edges, contradicting (T1). Thus, we

have that |M1| = 1
2
|T 1|, that is, T 1 has even number of vertices. Similarly, T 2 also

has even number of vertices.

Therefore, if F ∈ FD \L′, then we can chooseM1 andM2 such that every edge in

F is not used in M1 ∪M2. This together with appropriate edges in DF 1 (if F 1 ∈ L′)

and in DF l (if F l ∈ L′) forms a matching M̃ in D, which is a desired one in (2)-(i).

So we may assume that F ∈ L′. Suppose first that F = F 1. Note that F ̸= F ∗

by the choice of F 1. Since |T 1| is even, we can choose a matching M1 such that any
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edge in DF 2 is not used in M1. Then there exists an edge e in DF 1 which is not

incident with the vertex u, since DF 1 has at least three vertices. Therefore,M1∪{e},
together with M2 (and an edge in a circuit in DF l if F l ∈ L′), forms a matching

M̃ in D, which is a desired one for (2)-(i). When F = F l but F ̸= F ∗, or when

F = F l = F ∗ and the degree of u in DF ∗ is 2, then similarly we can find a desired

matching M̃ in D for (2)-(i). So we may assume that F = F l = F ∗ and the degree

of u in DF ∗ is 2g. In this case, M1 ∪M2 together with an appropriate edge in DF 1

(if F 1 ∈ L′) and an edge incident with u in F l forms a matching M̃ in D, which is a

desired one for (2)-(ii). This completes the proofs of Subclaim 2 and Claim 4. □

6.5 Reconstruction of bad C5s of Type I

In this subsection, we reconstruct all bad C5s of Type I in G3. After reconstructing

all such bad C5s, we get the original graph G, and we also get a set of circuits of G

from D3, say D̃. Note that D̃ might not be a D-system of G, because some edges

incident with uncovered vertices might be not dominated by any circuit in D̃. In

order to dominate all such edges, we shall add some circuits and some stars with

centers at uncovered vertices. In this process, the number of members in the D-

system increases, but we will show that we do not need to add too many circuits and

stars.

Let K be the subgraph of G induced by the set of uncovered vertices. Note that

any edge of K is not dominated by any circuit in D̃. For an uncovered vertex v

contained in a bad C5 of Type I, say C, we call v special if F is special forM3, where

F is the circuit in D3 passing the vertex corresponding to C. An uncovered vertex

v is non-special if v is not special for M3.

Let C1, C2, . . . , C l be vertex disjoint cycles in K. Taking as many such cycles as

possible, we can assume that K ′ has no cycle, where K ′ = K −
∪l

i=1 V (Ci). Let V S
0

and V N
0 be the set of special vertices and the set of non-special vertices in

∪l
i=1 V (Ci),

respectively. Since G is simple and triangle-free, for all 1 ≤ i ≤ l, Ci has at least

four vertices, and hence

l ≤ 1

4
|

l∪
i=1

V (Ci)| = 1

4

(
|V S

0 |+ |V N
0 |

)
. (3)

Taking a smaller partite set of each component of K ′, we obtain an independent

set I of K ′ which dominates all edges in K ′. Thus, there exists a mapping ψ from

E(K ′) to I such that for all e ∈ E(K ′), e is incident with ψ(e) ∈ I. Note that I does

not contain an isolated vertex in K ′, and hence |ψ−1(v)| ≥ 1 for each v ∈ I.

Let v ∈ I. Since v is uncovered with respect to some F ∈ D3, there exist two

D-dominated edges by v. Let Sv be the star which is formed by a center v together

with the edges in ψ−1(v) and two D-dominated edges by v. In particular, Sv is a
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star with at least three edges for all v ∈ I, and E(K ′) ⊂
∪

v∈I E(Sv). So, D is a

D-system of G, where

D := D̃ ∪ {C1, . . . , C l} ∪ {Sv : v ∈ I}.

Let S1 be the set of stars S ′
v in {Sv : v ∈ I} such that S ′

v contains an edge both

of whose end vertices are special. Let S2 := {Sv : v ∈ I} − S1. For i = 1, 2, let

V S
i and V N

i be the set of special vertices and the set of non-special vertices in Si,

respectively. Since for all v ∈ I, Sv contains at least two vertices in V (K ′), we have

that

|S1| ≤
1

2

(
|V S

1 |+ |V N
1 |

)
and |S2| ≤

1

2

(
|V S

2 |+ |V N
2 |

)
. (4)

On the other hand, since each star in S2 has to contain a non-special vertex, we

obtain

|S2| ≤ |V N
2 |. (5)

Let DS
3 ⊂ D3 be the set of special circuits for M3, and let DN

3 ⊂ D3 be the set of

circuits F in D3 such that F contains a contracted vertex from a bad C5 of Type I

and F is not special for M3. Since every circuit in DS
3 (and in DN

3 ) corresponds

to at least one special uncovered vertex for M3, (one non-special uncovered vertex,

respectively,) we obtain that

|DS
3 | ≤ |V S

0 |+ |V S
1 |+ |V S

2 |, (6)

and |DN
3 | ≤ |V N

0 |+ |V N
1 |+ |V N

2 |. (7)

On the other hand, when we reconstruct each bad C5, by Fact 13, we can find

two edges which can be added into the matching M3 of G3.

Moreover, let Sv ∈ S1 and let vv′ be an edge of Sv both of whose end vertices are

special. Let Cv = x1x2 . . . x5 and Cv′ = x′1x
′
2 . . . x

′
5 be the bad C5s corresponding to

v and v′, respectively. Let Fv be the circuit in D3 containing v.

Suppose first that Cv is a bad C5s of Type I-i or I-iii. In this case, by symmetry,

we may assume that v = x5. If all edges of Fv incident with xi for 1 ≤ i ≤ 5 are not

used in M3, then let e1 = x1x2 and e2 = x3x4. Otherwise, Fv ≃ K2,2g for some g ≥ 2

since v is special. In this case, we may also assume that x1 is incident with an edge

in M3. Since Cv is a bad C5 of Type I-i or I-iii, there exists an edge of Fv incident

with x4 in G. Then let e1 be such an edge and let e2 = x2x3. Suppose next that Cv

is a bad C5 of Type I-ii. In this case, we may assume that for all 1 ≤ i ≤ 4, xi is

not incident with an edge in M3, and we let e1 = x1x2 and e2 = x3x4. In either case,

note that e1 and e2 can be added into M3 as a matching.

Similarly, we can find two edges e′1 and e′2 from Cv′ such that e′1 and e′2 can be

added intoM3 as a matching. Moreover, when we reconstruct Cv and Cv′ , we can add
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x2 x5x1

x3 x4

x′5
x′2

x′1

x′4 x′3
v v′

Figure 5: The matching in G.

the five edges e1, e2, e
′
1, e

′
2 and vv

′ intoM3 and obtain a matching in G. See Figure 5.

This implies that for each Sv ∈ S1, we can add 2|V (Sv)∩
(
V S
1 ∪V N

1

)
|+1 edges intoM3

through reconstructions at Cu for all uncovered vertices u in Sv, where Cu is a bad

C5 corresponding to u. Thus, G has a matching with at least |M3|+ 2|V (K)|+ |S1|
edges, that is,

α′(G) ≥ |M3|+ 2|V (K)|+ |S1|. (8)

Hence by Claim 4 and by the inequalities (3) – (8),

α′(G)

≥ |M3|+ 2|V (K)|+ |S1|
≥

∑
F∈D3

f(F )− 1 + 2|V (K)|+ |S1|

≥ 3

2
|DS

3 |+ 2|DN
3 |+

5

2

(
|D̃| − |DS

3 | − |DN
3 |
)
+ 2|V (K)|+ |S1| − 1

=
5

2
|D̃| − |DS

3 | −
1

2
|DN

3 |+ 2
(
|V S

0 |+ |V S
1 |+ |V S

2 |+ |V N
0 |+ |V N

1 |+ |V N
2 |

)
+ |S1| − 1

≥ 5

2
|D̃|+ |V S

0 |+ |V S
1 |+ |V S

2 |+ 3

2

(
|V N

0 |+ |V N
1 |+ |V N

2 |
)
+ |S1| − 1

≥ 5

2
|D̃|+ 5

8

(
|V S

0 |+ |V N
0 |

)
+

3

4

(
|V S

1 |+ |V N
1 |

)
+ |S1|+

(
|V S

2 |+ |V N
2 |

)
+

1

2
|V N

2 | − 1

≥ 5

2
|D̃|+ 5

2
l +

3

2
|S1|+ |S1|+ 2|S2|+

1

2
|S2| − 1

=
5

2
|D| − 1,

or

|D| ≤ 2

5

(
α′(G) + 1

)
.

This completes the proof of Theorem 7. □
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[18] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B

70 (1997) 217–224.
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