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Abstract

A connected edge-colored graph G is rainbow-connected if any two distinct vertices

of G are connected by a path whose edges have pairwise distinct colors; the rainbow

connection number rc(G) of G is the minimum number of colors such that G is

rainbow-connected. We consider families F of connected graphs for which there is a

constant kF such that, for every connected F-free graph G, rc(G) ≤ diam(G)+ kF ,

where diam(G) is the diameter of G. In this paper, we give a complete answer for

|F| ∈ {1, 2}.

1 Introduction

We use [2] for terminology and notation not defined here and consider finite and simple

graphs only. To avoid trivial cases, all graphs considered here will be connected with at

least one edge.

An edge-colored connected graph G is called rainbow-connected if each pair of distinct

vertices of G is connected by a rainbow path, that is, by a path whose edges have pairwise

distinct colors. Note that the edge coloring need not be proper. The rainbow connection

number of G, denoted by rc(G), is the minimum number of colors such that G is rainbow-

connected.

The concept of rainbow connection in graphs was introduced by Chartrand et al. in

[7]. An easy observation is that if G has n vertices then rc(G) ≤ n − 1, since one may
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color the edges of a given spanning tree of G with different colors and color the remaining

edges with one of the already used colors. Chartrand et al. determined the precise value of

the rainbow connection number for several graph classes including complete multipartite

graphs [7]. The rainbow connection number has been studied for further graph classes

in [4, 10, 11, 15] and for graphs with fixed minimum degree in [4, 12, 17]. See [16] for a

survey.

There are various applications for such edge colorings of graphs. One interesting

example is the secure transfer of classified information between agencies (see, e. g., [9]).

The computational complexity of rainbow connectivity has been studied in [5, 13].

It is proved that the computation of rc(G) is NP-hard ([5, 13]). In fact, it is already

NP-complete to decide whether rc(G) = 2. It is also NP-complete to decide whether a

given edge-colored graph (with an unbounded number of colors) is rainbow-connected [5].

More generally, it has been shown in [13] that for any fixed k ≥ 2 it is NP-complete to

decide whether rc(G) = k.

For the rainbow connection numbers of graphs the following results are known (and

obvious).

Proposition A. Let G be a connected graph of order n. Then

(i) 1 ≤ rc(G) ≤ n− 1,

(ii) rc(G) ≥ diam(G),

(iii) rc(G) = 1 if and only if G is complete,

(iv) rc(G) = n− 1 if and only if G is a tree,

(v) if G is a cycle of length n ≥ 4, then rc(G) = ⌈n
2
⌉.

Note that the difference rc(G)− diam(G) can be arbitrarily large. For G = K1,n−1 we

have rc(K1,n−1)− diam(K1,n−1) = (n− 1)− 2 = n− 3. Especially, each bridge requires a

single color.

Let F be a family of connected graphs. We say that a graph G is F-free if G does not

contain an induced subgraph isomorphic to a graph from F . Specifically, for F = {X}
we say that G is X-free, and for F = {X, Y } we say that G is (X, Y )-free. The members

of F will be referred to in this context as forbidden induced subgraphs.

Graphs characterized in terms of forbidden induced subgraphs are known to have many

interesting properties. Although, in general, there is no upper bound on rc(G) in terms

of diam(G), and, in bridgeless graphs, by virtue of Theorem F, rc(G) can be quadratic in

terms of diam(G), it turns out that forbidden subgraph conditions can remarkably lower

the upper bound on rc(G).

Namely, we will consider the following question.

For which families F of connected graphs, there is a constant kF such that a connected

graph G being F -free implies rc(G) ≤ diam(G) + kF?

We give a complete answer for |F| = 1 in Section 3, and for |F| = 2 in Section 4.
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2 Preliminary results

In this section we summarize some further notations and facts that will be needed for the

proofs of our results.

An edge in a graph G is called a bridge, if its removal disconnects the graph. A graph

with no bridges is called a bridgeless graph. An edge is called pendant edge, if one of its

end vertices has degree one. For two vertices x, y ∈ V (G), we denote by dist(x, y) the

distance between x and y in G. The diameter and the radius of a graph G will be denoted

by diam(G) and rad(G), respectively. For M ⊂ V (G), we use G[M ] to denote the induced

subgraph of G on M .

For x ∈ V (G), we use NG(x) to denote the neighborhood of x in G and NG[x] to denote

the closed neighborhood of x in G (i.e., NG(x) = {y ∈ V (G)| xy ∈ E(G)} and NG[x] =

NG(x) ∪ {x}). More generally, for sets A,B ⊂ V (G), we denote NG(A) = ∪x∈ANG(x)

and NB(A) = NG(A) ∩ B, and for a subgraph P ⊂ G we write NP (A) for NV (P )(A) and

NG(P ) for NG(V (P )).

A dominating set D in a graph G is called a two-way dominating set if D includes all

vertices of G of degree 1. In addition, if G[D] is connected, we call D a connected two-way

dominating set. Note that if δ(G) ≥ 2, then every (connected) dominating set in G is a

(connected) two-way dominating set.

Theorem B [6]. If D is a connected two-way dominating set in a graph G, then

rc(G) ≤ rc(G[D]) + 3.

The following simple fact is implicit in the proof od Theorem B in [6]. However, since

it is not stated explicitly, and since it will be used several times, we state it here, including

its (easy) proof.

Proposition C [6]. LetG be a graph and let F ⊂ G be a connected subgraph ofG such

that every vertex in V (G) \ V (F ) has at least 2 neighbors in F . Then rc(G) ≤ rc(F ) + 2.

Proof. Color the edges of G as follows:

• color the edges of F with colors 1, . . . , k, where k = rc(F ),

• for each x ∈ V (G) \ V (F ), choose two edges from x to F and color them with

colors k + 1 and k + 2,

• color the remaining edges arbitrarily (e.g., all of them with color k + 2).

Then G is rainbow-connected.

For the proofs of Theorem 4 and Theorem 6, we will also need the following two facts

by Li et al. [14].

Theorem D [14]. If G is a connected bridgeless graph of diameter 2, then rc(G) ≤ 5.
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Theorem E [14]. If G is a connected graph of diameter 2 with k ≥ 1 bridges, then

rc(G) ≤ k + 2.

For connected bridgeless graphs, the following upper bound on rc(G) was proved by

Basarajavu et al. [1].

Theorem F [1]. For every connected bridgeless graph G with radius r,

rc(G) ≤ r(r + 2).

Moreover, for every integer r ≥ 1, there exists a bridgeless graph G with radius r and

rc(G) = r(r + 2).

3 One forbidden subgraph

In this section, we characterize all connected graphs X such that every connected X-free

graph G satisfies rc(G) ≤ diam(G) + kX , where kX is a constant.

Theorem 1. Let X be a connected graph. Then there is a constant kX such that every

connected X-free graph G satisfies rc(G) ≤ diam(G) + kX , if and only if X = P3.

Proof. If X = P3, then G is a complete graph, implying rc(G) = diam(G) = 1.

Conversely, let t0 ≥ 3 and, for t ≥ t0, set Gt
1 = K1,t, and let Gt

2 denote the graph

obtained by attaching a pendant edge to each vertex of a complete graph Kt (see Fig. 1).

Since rc(Gt
1) = t but diam(Gt

1) = 2, Gt
1 must contain an induced copy of X. Hence X is

a star. Since rc(Gt
2) = t + 1 but diam(Gt

2) = 3, Gt
2 contains an induced copy of X. But

X is a star and Gt
2 is K1,3-free, hence X = K1,2 = P3.

•

•

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........

•
...................

...................
...................

...................
...................

............

...

•

...........................................................................................................


t

Gt
1

.......

.......
.......
........
........
..........

..............
.......................................................................................................................................................................................................
...........
.........
........
.......
.......
.......
....Kt

•
•

.........
.........
.........
.........
.........
.........
.........
..

•
•

...................
...................

...................
.......

...•
•

.................................................................


t

Gt
2

Figure 1: The graphs Gt
1 and Gt

2

4 Pairs of forbidden subgraphs

The main result of this section, Theorem 2, characterizes all forbidden pairsX, Y for which

there is a constant kXY such that G being (X,Y )-free implies rc(G) ≤ diam(G) + kXY .
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Figure 2: The net N

Here the net is the graph obtained by attaching a pendant edge to each vertex of a triangle

(see Fig 2). By virtue of Theorem 1, we exclude the case that one of X,Y is P3.

Theorem 2. Let X,Y be connected graphs, X, Y ̸= P3. Then there is a constant kXY

such that every connected (X,Y )-free graph G satisfies rc(G) ≤ diam(G) + kXY , if and

only if (up to symmetry) either X = K1,r, r ≥ 4 and Y = P4, or X = K1,3 and Y is an

induced subgraph of N .

The proof of Theorem 2 will be subdivided into three separate results: in Proposition 3,

we prove necessity, and Theorems 4 and 6 will establish sufficiency of the forbidden pairs

given in Theorem 2.

Proposition 3. Let X,Y ̸= P3 be connected graphs for which there is a constant kXY

such that every connected (X, Y )-free graph G satisfies rc(G) ≤ diam(G) + kXY . Then

(up to symmetry) either X = K1,r, r ≥ 4 and Y = P4, or X = K1,3 and Y is an induced

subgraph of N .

Proof. Let t0 ≥ 3 and, for t ≥ t0, let (see Fig. 3):

• Gt
3 be the graph obtained by attaching an endvertex of a path Pt to every vertex

of a triangle,

• Gt
4 be the graph obtained by attaching a pendant edge to every internal vertex of

a path Pt.

We will also use the graphs Gt
1 and Gt

2 introduced in the proof of Theorem 1.
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Figure 3: The graphs Gt
3 and Gt

4

Consider the graph Gt
1 = K1,t. Since rc(Gt

1) = t while diam(Gt
1) = 2, we have, up to

symmetry, X = K1,r for some r ≥ 3. Now we consider the graphs Gt
2 and Gt

3. Clearly

rc(Gt
2) = t+ 1 while diam(Gt

2) = 3, and for Gt
3 we observe that diam(Gt

3) = 2t− 1 while

rc(Gt
3) ≥ 3(t− 1) (since all edges of the three paths must have mutually distinct colors),

from which rc(Gt
3) ≥ 3

2
(diam(Gt

3) − 1). Since both Gt
2 and Gt

3 are claw-free, neither of

them contains X, implying that both Gt
2 and Gt

3 contain Y . Since the maximum common
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induced subgraph of Gt
2 and Gt

3 is the net, we have that Y = N , or Y is an induced

subgraph of N .

Now consider the graph Gt
4. Obviously, diam(Gt

4) = t− 1 and rc(Gt
4) = |V (Gt

4)| − 1 =

2t− 3, from which rc(Gt
4) = 2 diam(Gt

4)− 1. We have two possibilities:

(i) Gt
4 containsX. Then we obtain thatX = K1,3 and Y = N (or an induced subgraph

of N).

(ii) Gt
4 contains Y . As the only induced subgraph of the net N contained in Gt

4 and

different from P3 (or an induced subgraph) is the path P4, and the case X = K1,3

is already covered by case (i), we have that X = K1,r, r ≥ 4, and Y = P4.

Theorem 4. Let G be a connected (K1,r, P4)-free graph for some r ≥ 4. Then

rc(G) ≤ r + 1.

Proof. We have diam(G) ≤ 2 since G is P4-free. If diam(G) = 1, then G is a complete

graph and rc(G) = 1. Hence we may assume that diam(G) = 2.

If G is bridgeless, then, by Theorem D, rc(G) ≤ 5, implying rc(G) ≤ 5 ≤ r + 1 and

we are done. Thus, let e = uv be a bridge in G. Since diam(G) = 2, one of u, v, say, u,

is of degree 1, and v is adjacent to all the other vertices of G. Since G is K1,r-free, G has

at most r − 1 bridges. By Theorem E, we then have rc(G) ≤ (r − 1) + 2 = r + 1.

Corollary 5. Let G be a connected (K1,r, P4)-free graph for some r ≥ 4. Then

rc(G) ≤ diam(G) + r − 1.

Proof. If diam(G) = 1, then rc(G) = 1 ≤ diam(G) + r − 1, and if diam(G) = 2, then,

by Theorem 4, rc(G) ≤ r + 1 = diam(G) + r − 1.

Note that, for any r ≥ 3, the graph Gr−1
1 in Fig. 1 is (K1,r, P4)-free and has rc(Gr−1

1 ) =

r− 1 = diam(Gr−1
1 ) + r− 3. This shows that the constant in Theorem 4 and Corollary 5

has to depend on r.

Theorem 6. Let G be a connected (K1,3, N)-free graph. Then rc(G) ≤ diam(G) + 3.

For the proof of Theorem 6, we will need some observations on cycles and paths in

(K1,3, N)-free graphs. The first of them deals with induced cycles.

Lemma 7. Let G be a (K1,3, N)-free graph and let C ⊂ G be a chordless cycle of

length at least 5 in G. Then V (C) ∪ NG(C) = V (G) and every vertex in V (G) \ V (C)

has at least 2 consecutive neighbors on C.
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Proof. Let first x ∈ V (G)\V (C) be at distance 1 from C, let y ∈ NC(x), and let y1, y2
be the neighbors of y on C. If neither y1 nor y2 is adjacent to x, then G[{y, y1, y2, x}] ≃
K1,3, a contradiction.

Secondly, let x ∈ V (G) \ V (C) be at distance 2 from C, and let y be a neighbor

of x at distance 1 from C. By the above, y has 2 consecutive neighbors y1, y2 on C.

Let y′1 be the neighbor of y1 on C distinct from y2, and, symmetrically, let y′2 be the

neighbor of y2 on C distinct from y1. If y′1y ∈ E(G), then G[{y, x, y′1, y2}] ≃ K1,3, if

y′2y ∈ E(G), then G[{y, x, y1, y′2}] ≃ K1,3, and if neither y′1 nor y′2 is adjacent to y, then

G[{y1, y2, y, y′1, y′2, x}] ≃ N .

We will also need the following simple observations on shortest paths and their neigh-

borhoods in (K1,3, N)-free graphs. Their main idea can be found in [3] (and, in fact,

already in [8]), however, for the sake of completeness, we include them here as well.

Let G be a claw-free graph, let x, y ∈ V (G) and let P : x = v0v1v2 . . . vk = y, k ≥ 3,

be a shortest xy-path in G. Let z ∈ V (G) \ V (P ).

1. If |NP (z)| = 1, then, since G is claw-free, z is adjacent to x or to y.

2. If |NP (z)| ≥ 2 and {vi, vj} ⊂ NP (z), then, since P is a shortest path, |i− j| ≤ 2.

3. By (1) and (2), since G is claw-free and since P is a shortest path, |NP (z)| ≤ 3 for

every vertex z ∈ V (G) \ V (P ), and the vertices of NP (z) are consecutive on P .

This motivates the following notation:

Ni := {z ∈ V (G) \ V (P )| NP (z) = {vi−1, vi, vi+1}} for 1 ≤ i ≤ k − 1,

Mi := {z ∈ V (G) \ V (P )| NP (z) = {vi−1, vi}} for 1 ≤ i ≤ k,

M0 := {z ∈ V (G) \ V (P )| NP (z) = {v0}},

Mk+1 := {z ∈ V (G) \ V (P )| NP (z) = {vk}}.

Then, by (1), (2) and (3), we have N(P ) ∪ V (P ) = (
∪k−1

i=1 Ni) ∪ (
∪k+1

i=0 Mi) ∪ V (P ). We

further denote S = V (P ) ∪ N(P ) and R = V (G) \ S. The sets Mi and Ni have the

following properties.

Lemma 8. Let G be a (K1,3, N)-free graph, let x, y ∈ V (G) be vertices at distance

distG(x, y) ≥ 3, and let P : x = v0v1v2 . . . vk = y be a shortest xy-path in G. Then

(i) NG(Mi) ⊂ V (P ) ∪NG(P ), i = 2, . . . , k − 1,

(ii) NG(Ni) ⊂ V (P ) ∪NG(P ), i = 1, . . . , k − 1,

(iii) NP (R) = ∅,
(iv) NS(R) ⊆ M0 ∪M1 ∪Mk ∪Mk+1.
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Proof. If zy ∈ E(G) for some z ∈ R and y ∈ Mi, 2 ≤ i ≤ k − 1, then we have

G[{vi−2, vi−1, vi, vi+1, y, z}] ≃ N , a contradiction. Hence NG(Mi) ⊂ S, implying (i).

Similarly, if zy ∈ E(G) for z ∈ R and y ∈ Ni, 1 ≤ i ≤ k − 1, then G[{y, z, vi−1, vi+1}] ≃
K1,3, a contradiction. Hence NG(Ni) ⊂ S, implying (ii). Part (iii) follows immediately

by the definition of R, and (iv) follows immediately by (i) and (ii).

Proof of Theorem 6. Let G be a (K1,3, N)-free graph. If diam(G) = 1, G is a complete

graph and there is nothing to do.

Let now diam(G) = 2. If G is bridgeless, we have rc(G) ≤ 5 = diam(G) + 3 by

Theorem D; if G has k ≥ 1 bridges, then, by diam(G) = 2, all bridges in G have a vertex

in common, implying k ≤ 2 (since G is K1,3-free), and we have rc(G) ≤ k + 2 ≤ 4 =

diam(G) + 2 by Theorem E.

Thus, for the rest of the proof we suppose that diam(G) = d ≥ 3. Let v0, vd ∈ V (G)

be at distance d, let P : v0v1v2 . . . vd be a diameter path in G, and let Mi, Ni, S, R be as

above. Set Bc = (∪d−1
i=1Ni) ∪ (∪d−1

i=2Mi) ∪ {v1, . . . , vd−1}. By virtue of Lemma 8, we have

NG(Bc) ⊂ V (P ) ∪NG(P ).

We distinguish two cases.

Case 1: Bc is a cutset of G.

We claim that R = ∅. Let, to the contrary, z ∈ R be at distance 2 from P . Then, by

Lemma 8, by the assumption of Case 1 and by symmetry, we can suppose that NS(z) ⊂
M0 ∪M1. Let Q be a shortest (z, vd)-path, let w be the first vertex of Q in Bc (it exists

by the assumption of Case 1), and let w− be the predecessor of w on Q. By Lemma 8,

dist(w−, P ) = 1, implying w− ∈ M0 ∪ M1. Then distG(w
−, vd) ≥ d − 1 (otherwise the

path v0w
−Qvd is a (v0, vd)-path shorter than d), implying distG(w

−, vd) = d − 1 and

w−z ∈ E(G). But then G[{w−, z, v0, w}] ≃ K1,3, a contradiction. Thus, V (P ) is a

connected dominating set in G. Moreover, if M0 ̸= ∅, then M0 ⊂ NG(M2), for otherwise

again M0 contains a vertex at distance d + 1 from vd (note that an edge from M0 to

M3 is not possible since it would create an induced net). This specifically implies that

every vertex in M0 is of degree at least 2. Thus, the only vertices of G that can possibly

be of degree 1, are the vertices v0 and vd. Consequently, V (P ) is a connected two-way

dominating set in G, and, by Theorem B, we have rc(G) ≤ rc(P ) + 3 = diam(G) + 3.

Case 2: Bc is not a cutset of G.

In this case, our strategy is to construct in G an induced cycle of length at least 5 and

to use Lemma 7 and Proposition C. However, for d = 3, it is possible that G contains an

edge xy with x ∈ M1 and y ∈ M3, in which case the general construction does not work.

Thus, we consider the possibility when d = 3 separately.

Set H = G−Bc.
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Subcase 2.1: d = 3.

First suppose that H contains a (v0, v3)-path which neither contains an edge from M1 to

M3 nor has such an edge as a chord, and, among all such paths, let P ′ : v3v4 . . . v3+ℓ = v0
be a shortest one. Clearly, ℓ ≥ 3. Set P 3 : v2v3v4 if v2v4 /∈ E(G) or P 3 : v2v4 if

v2v4 ∈ E(G), and, symmetrically, set P 0 : v3+ℓ−1v0v1 if v3+ℓ−1v1 /∈ E(G) or P 0 : v3+ℓ−1v1
if v3+ℓ−1v1 ∈ E(G), respectively. Set C : v1v2P

3v4 . . . v3+ℓ−1P0v1. By the choice of P ′,

at least one of the paths P 0, P 3, v4P
′v3+ℓ−1 has length at least 2, hence C is a cycle of

length at least 5 and it is straightforward to verify that C is chordless.

Claim 1. ℓ ≤ 5.

Proof. Suppose that ℓ ≥ 6, and let Q be a shortest (v0, v5)-path in G. Then |E(Q)| ≤ 3

(since diam(G) = 3), and, since ℓ ≥ 6 and P ′ is shortest in H = G − Bc, we have

distH(v0, v5) ≥ 4. Hence either Q contains an edge between M1 and M3, or Q contains a

vertex from Bc. However, in the first case, if x ∈ V (Q)∩M3 and x−, x+ are the predecessor

and successor of x on Q, then G[{x, x−, x+, v3}] ≃ K1,3, a contradiction. Hence Q contains

a vertex from Bc.

Let w− be the last vertex of Q in Bc, and let w be its successor on Q (it exists

since v5 /∈ Bc by the definition of P ′). By Lemma 8, w is at distance at most 1 from

P . Since clearly w /∈ {v0, v3}, either wv0 ∈ E(G) or wv3 ∈ E(G). If wv0 ∈ E(G),

then, replacing in Q the subpath v0Qw by the edge v0w, we get a (v0, v5)-path in G

shorter than Q, a contradiction. Hence wv3 ∈ E(G). Now, w ̸= v5 since C is chordless,

therefore distG(v0, w) = 2, implying that v0, w
− ∈ E(G) and wv5 ∈ E(Q). But then

G[{w,w−, v5, v3}] ≃ K1,3, a contradiction. Hence ℓ ≤ 5. �

Now, C is a chordless cycle of length at least 5 and at most 3 + ℓ ≤ 8. Thus, by

Lemma 7, Proposition C and Proposition A(v), we have rc(G) ≤ rc(C) + 2 ≤ 6 =

diam(G) + 3.

Thus, we finally suppose that every (v0, vd)-path in H either contains an edge from

M1 to M3, or has such an edge as a chord.

Claim 2. The set V (P ) ∪M1 ∪Bc ∪M3 ⊂ V (G) can be covered by 4 complete graphs

K1, K2, K3, K4 such that V (K1) = {v0, v1} ∪M1, V (K2) = {v1, v2} ∪N1 ∪M2, V (K3) =

{v1, v2} ∪N2, and V (K4) = {v2, v3} ∪M3.

Proof. If there are x1, x2 ∈ M1 with x1x2 /∈ E(G), then G[{v1, x1, x2, v2}] ≃ K1,3, a con-

tradiction. Hence K1 is complete. Similarly, if some x1, x2 ∈ (N1 ∪M1) are nonadjacent,

then G[{v2, x1, x2, v3}] ≃ K1,3, hence K2 is also complete. The proof for K3 and K4 is

symmetric. �

Set F = G[V (P ) ∪M1 ∪Bc ∪M3].

Claim 3. rc(F ) ≤ 4.
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Proof. Color E(K1) with color 1, E(Ki)\E(Ki−1) with color i, i = 2, 3, 4, and remaining

edges of F arbitrarily (e.g., all of them with color 4). Then F is rainbow-connected. �

Claim 4. V (F ) ∪ NG(F ) = V (G) and every vertex in V (G) \ V (F ) has at least 2

neighbors in F .

Proof. Suppose that a vertex x ∈ V (G) \ V (F ) at distance 1 from F has exactly one

neighbor in F , and set NF (x) = {y}. Then, by Lemma 8, up to symmetry, either x ∈ M0

or y ∈ M1. Let Q be a shortest (x, v3)-path in H. By the assumption, Q contains an edge

from M1 to M3, implying that, in both cases, the successor of x on Q is in M1. Thus, if

x ∈ M0, x has 2 neighbors in F and we are done, and, if y ∈ M1, the successor y+ of y

on Q is in M3 and we have G[{y, x, v0, y+}] ≃ K1,3, a contradiction. Hence every vertex

at distance 1 from F has at least 2 neighbors in F .

It remains to show that V (F ) ∪ NG(F ) = V (G). Let, to the contrary, z ∈ V (G)

be at distance 2 from F , let y be a neighbor of z at distance 1 from F , and, by the

previous part, let y1, y2 be neighbors of y in V (F ). Then y1y2 ∈ E(G), for otherwise

G[{y, z, y1, y2}] ≃ K1,3. Since dist(z, v0) ≤ 3 and dist(z, v3) ≤ 3, we have, up to symmetry,

y1 ∈ M1 ∪ {v0} and y2 ∈ M3 ∪ {v3}. If e.g. y2 = v3, then v0y1y2 is a (v0, v3)-path

of length 2, a contradiction. Hence y2 ∈ M3, and, symmetrically, y1 ∈ M1. But then

G[{y, y1, y2, z, v0, v3}] ≃ N , a contradiction. �

Now, by Claim 4, by Claim 3 and by Proposition C, we have rc(G) ≤ rc(F )+2 ≤ 6 =

diam(G) + 3.

Subcase 2.2: d ≥ 4.

Let P ′ : vdvd+1vd+2 . . . vd+ℓ−1vd+ℓ = v0 be a shortest vdv0-path in H. Since P is a diameter

path, ℓ ≥ d. Since H is (K1,3, N)-free and P ′ is a shortest path in H, we can define

analogously the sets Mi, Ni for i = d + 1, . . . d + ℓ, and we set B′
c = (∪d+ℓ−1

i=d+1Ni) ∪
(∪d+ℓ−1

i=d+2Mi) ∪ {vd+1, . . . , vd+ℓ−1}. By Lemma 8, we have NG(B
′
c) ⊂ V (P ′) ∪NG(P

′).

Let P d be the path P d : vd−1vdvd+1 if vd−1vd+1 /∈ E(G), or the edge P d : vd−1vd+1

if vd−1vd+1 ∈ E(G), respectively, and, symmetrically, set P 0 : vd+ℓ−1v0v1 if vd+ℓ−1v1 /∈
E(G), or P 0 : vd+ℓ−1v1 if vd+ℓ−1v1 ∈ E(G), respectively. Finally, let C be the cycle

C : v1 . . . vd−1P
dvd+1 . . . vd+ℓ−1P

0v1. Then C is a cycle of length at least 2d− 2.

Claim 5. The cycle C is chordless.

Proof. Let, to the contrary, vivj ∈ E(G) be a chord in C. Since both P and P ′ are

chordless, we can choose the notation such that 1 ≤ i ≤ d− 1 and d+ 1 ≤ j ≤ d+ ℓ− 1.

Since vj ∈ V (P ′), we have vj /∈ Bc by the definition of P ′, implying that i = d − 1

and vj ∈ Md, or, symmetrically, i = 1 and vj ∈ M1. This implies that in the first case

vj = vd+1 and in the second case vj = vd+ℓ−1, in both cases, vivj ∈ V (C) by the definition

of C. Thus, C is chordless. �
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Claim 6. ℓ ≤ d+ 2.

Proof. Suppose that ℓ ≥ d + 3, and let Q be a shortest (v0, vd+2)-path in G. Then

|E(Q)| ≤ d (since diam(G) = d), and, since ℓ ≥ d+3 and P ′ is shortest in H = G−Bc, we

have distH(v0, vd+2) ≥ d+1. Hence Q contains a vertex from Bc. Let w
− be the last vertex

of Q in Bc, and let w be its successor on Q (it exists since vd+2 /∈ Bc by the definition

of P ′). By Lemma 8, w is at distance at most 1 from P . Since clearly w /∈ {v0, vd},
either wv0 ∈ E(G) or wvd ∈ E(G). If wv0 ∈ E(G), then, replacing in Q the subpath

v0Qw by the edge v0w, we get a (v0, vd+2)-path in G shorter than Q, a contradiction.

Hence wvd ∈ E(G). Now, w ̸= vd+2 since C is chordless, implying distG(v0, w) ≤ d − 1.

However, if distG(v0, w) ≤ d − 2, then v0Qwvd is a (v0, vd)-path of length at most d − 1,

contradicting the fact that diam(G) = d. Hence distG(v0, w) = d − 1, implying that

distG(v0, w
−) = d − 2 and wvd+2 ∈ E(Q). But then G[{w,w−, vd+2, vd}] ≃ K1,3, a

contradiction. Hence ℓ ≤ d+ 2. �

By Claim 5, C is a chordless cycle of length at least 2d − 2 ≥ 6, thus, by Lemma 7

and by Proposition C, rc(G) ≤ rc(C) + 2. By Claim 6, the length of C is at most

d + ℓ ≤ 2d + 2, hence, by Proposition A(v), rc(C) ≤ ⌈2d+2
2

⌉ = d + 1. Summarizing, we

have rc(G) ≤ rc(C) + 2 ≤ d+ 3.

5 Concluding remarks

In Sections 3 and 4, we have characterized forbidden families F with |F| ≤ 2 implying

that rc(G) ≤ diam(G) + kF . As a next step, it is natural to ask for forbidden families F
implying that rc(G) is bounded by a linear function of diam(G). Thus, we can address

the following question.

For which families F of connected graphs, there are constants qF , kF such that a connected

graph G being F -free implies rc(G) ≤ qF · diam(G) + kF?

For |F| = 1, it is easy to observe that both graphs Gt
1, G

t
2, used in the proof of the

“only if” part of Theorem 1, have bounded diameter but their rainbow connection number

is unbounded for t → ∞. Thus, for |F| = 1, the answer to the above question is the same

as in Theorem 1, i.e., the only such graph X is the path X = P3.

Our last result shows that the situation is the same also for |F| = 2.

Theorem 9. Let X, Y ̸= P3 be connected graphs. Then there are constants qXY , kXY

such that every connected (X,Y )-free graph G satisfies rc(G) ≤ qXY · diam(G) + kXY , if

and only if (up to symmetry) either X = K1,r, r ≥ 4 and Y = P4, or X = K1,3 and Y is

an induced subgraph of N .
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Proof. Sufficiency follows from Theorems 4 and 6; it remains to show necessity.

Let q, k be arbitrary constants, let s be a positive integer such that 3 · 2s−2 > q + 1,

and let Ts be a balanced cubic tree of depth s + 1, i.e., with 3 · 2s leaves (vertices of

degree 1) and 3 · 2s − 2 non-leaves of degree 3, thus with |V (Ts)| = 3 · 2s+1 − 2 vertices

and |E(Ts)| = 3 · 2s+1 − 3 edges (for s = 2, see Fig. 4).
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Figure 4: The tree T2

For t ≥ s+ 1, let:

• Gs,t
5 be the graph obtained by identifying each leaf of a tree Ts with an endvertex

of a path Pt+1,

• Gs,t
6 be the line graph of the graph Gs,t

5

(for s = 1, see Fig. 5).
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Figure 5: The graphs G1,t
5 and G1,t

6

For the graph Gs,t
5 , we have diam(Gs,t

5 ) = 2(s + t + 1) and rc(Gs,t
5 ) = |E(Gs,t

5 )| >
3 · 2st ≥ 3 · 2s−1(t+ s+ 1) = 3 · 2s−2 · diam(Gs,t

5 ) > (q+ 1) · diam(Gs,t
5 ) since Gs,t

5 is a tree.

Hence there is a t1 such that, for t ≥ t1, rc(G
s,t
5 ) > q · diam(Gs,t

5 ) + k.

For the graph Gs,t
6 , we analogously have diam(Gs,t

6 ) = 2s + 1 + 2t = 2s + 2t + 1

and, since Gs,t
6 has 3 · 2st bridges, we have rc(Gs,t

6 ) ≥ 3 · 2st ≥ 3 · 2s−1(t + s + 1) =

3 · 2s−2(2t+ 2s+ 2) > 3 · 2s−2 · diam(Gs,t
6 ) > (q + 1) · diam(Gs,t

6 ). Hence there is a t2 such

that, for t ≥ t2, rc(G
s,t
6 ) > q · diam(Gs,t

6 ) + k.

We will also use the graphs Gt
1 and Gt

2 introduced in the proof of Theorem 1, which, as

already noted, have bounded diameter but their rainbow connection number is unbounded
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for t → ∞; hence there are t3 and t4 such that rc(Gt
1) > q · diam(Gt

1) + k for t ≥ t3 and

rc(Gt
2) > q · diam(Gt

2) + k for t ≥ t4.

Now, let X, Y be connected graphs implying that every connected (X,Y )-free graph

G satisfies rc(G) ≤ q · diam(G) + k, and set t0 = max{t1, t2, t3, t4}. Then, by the above

discussion, for t ≥ t0, each of the graphs Gt
1, G

t
2, G

s,t
5 , Gs,t

6 contains an induced X or Y .

By symmetry, we can suppose that Gt
1 contains X, implying X = K1,r for some r ≥ 3.

Since both Gt
2 and Gs,t

6 are claw-free, Y is an induced subgraph of both Gt
2 and Gs,t

6 ,

implying that Y = N (or an induced subgraph).

Considering Gs,t
5 , we have two possibilities:

(i) Gs,t
5 contains X, and then X = K1,3 and Y = N ,

(ii) Gs,t
5 contains Y , and then, since the only induced subgraph of N contained in Gs,t

5

and different from P3 is P4, and the case X = K1,3 is already covered in (i), we

conclude that X = K1,r, r ≥ 4, and Y = P4.
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