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Abstract.
A sum graph G is a graph with an injective mapping of the vertex set of
G onto a set of positive integers S in such a way that two vertices of G
are adjacent if and only if the sum of their labels is an element of S. In
an exclusive sum graph the integers of S that are the sum of two other
integers of S form a set of integers that label a collection of isolated vertices
associated with the graph G. A graph bears a k-exclusive sum labelling
(abbreviated k-ESL), if the set of isolated vertices is of cardinality k, an
optimal exclusive sum labelling if k is as small as possible, and ∆-optimal if
k equals the maximum degree of the graph.

In this paper, observing that the property of having a k-ESL is hered-
itary, we provide a characterisation of graphs that have a k-exclusive sum
labelling, for any k ≥ 1, in terms of describing a universal graph for the
property.

4Research supported by project P202/12/G061 of the Czech Science Foundation.
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1 Introduction

All graphs considered here are simple and undirected unless otherwise stated.
All graphs are also connected except for the isolated vertices necessary to
maintain the labelling. We will define terms specific to this article, for all
other terms used the reader is referred to [3].

1.1 Sum Graphs

A sum graph G is a graph with an injective mapping of the vertex set of
G onto a set of positive integers S in such a way that two vertices of G
are adjacent if and only if the sum of their labels is an element of S. More
formally, for a sum labelling L : V (G)→ S, we have u, v ∈ V (G), uv ∈ E(G),
if and only if there is a w ∈ V (G) such that L(u) + L(v) = L(w). In this
case the vertex w is said to be a working vertex whose work is to witness
the edge uv.

Sum graphs were introduced by Harary in [5] as a terse way of storing and
communicating graphs. One of the first properties noticed of sum graphs
was that they must be disconnected. The vertex with the largest label must
be an isolate. Any graph can be sum labelled by including sufficiently many
isolated vertices with the graph. The sum number of a graph G, σ(G) is
the smallest cardinality of a set of isolates that must be included with G in
order for it to have a sum labelling.

A sum graph with all working vertices being confined to the set of isolates
was postulated in [8] and given the name exclusive sum graph. More pre-
cisely, for a given positive integer k, a k-exclusive sum labelling (abbreviated
k-ESL) of a graph G is a sum labelling L of the graph G∪Kk such that, for
u, v ∈ V (G∪Kk), we have uv ∈ E(G∪Kk) if and only if L(u)+L(v) = L(w)
for some w ∈ Kk (and, similarly as above, we say that the isolate w witnesses
the edge uv). Note that there is a slight formal difference here: unlike in
sum graphs, when saying that a graph G is an exclusive sum graph, we do
not consider the isolates to be vertices of G, and, consequently, an exclusive
sum graph does not have to be disconnected. We will use Ek to represent
the class of all graphs having a k-ESL.

Thus, a (given) k-ESL assigns to every edge of G an isolate by which it
is witnessed. This assignment can be also thought of as an edge colouring
of G, in which the colour of an edge equals the label of the isolate by which
it is witnessed. Since all labels of vertices have to be distinct, no two edges
adjacent to the same vertex can have the same colour and, consequently,
this assignment determines a proper edge colouring of G. Moreover, also
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conversely, once the assignment of labels to the edges of G (i.e., the edge
colouring of G) is given, then the labelling L of the vertices of G is uniquely
determined, up to an additive constant (provided G is connected; otherwise
this is true in each component of G).

However, note that not every proper k-edge-colouring of G determines a
k-ESL of G: for example, the graph K2,2,2 (see Fig. 7) is 4-edge-colourable
while it can be shown [6] that any of its exclusive sum labellings requires at
least 7 isolates.

Obviously, if G has a k-ESL, then G has a k′-ESL for every k′ ≥ k (i.e.,
adding extra isolates does not change the k-ESL property). The exclusive
sum number of a graph G, ε(G) is the smallest k for which G has a k-ESL,
i.e., the cardinality of the smallest set of isolates that must be included with
G in order for it to have an exclusive sum labelling. Clearly σ(G) ≤ ε(G)
and, by the above observations on edge-colourings, χ′(G) ≤ ε(G), where
χ′(G) is the edge chromatic number (also called the chromatic index) of G.

Exclusive sum numbers are known for various families of graphs such
as: complete graphs, ε(Kn) = 2n − 3, n > 3 [2]; cocktail party graphs,
ε(H2,n) = 2n− 5 [6]; and odd wheels, ε(Wn) = n, n odd [7].

Since, for an exclusive sum graph G, labels of the isolates determine
a proper edge-colouring of G, the fewest number of isolates required for a
graph G to bear an exclusive sum labelling is χ′(G) and, consequently, by
Vizing’s theorem, the maximum degree of G,∆(G). Exclusive sum graphs
with ∆ isolates are referred to as ∆-optimal exclusive sum graphs. Such
graphs include caterpillars, shrubs (trees with diameter 4), stars and double
stars [10]. By the above observations on edge-colourings, every such graph
must satisfy χ′(G) = ∆(G), i.e., must be of chromatic class 1. Ryan [9] has
produced a survey of exclusive graph labellings while Gallian [4] devotes a
section to exclusive sum labellings in his well-known dynamic survey.

The problem with applying an exclusive sum labelling (and indeed a sum
labelling) is twofold. First the labelling must witness every edge but also no
two non-adjacent vertices should have labels that sum to another label. To
do so would have the effect of inducing an edge in the graph that belongs
in the complement of the graph. For example, let us label C4 with 2, 4, 5, 7
(cyclic). Then the isolates required would be 6, 9, 12. However the label 7
induces an edge between vertices labelled 2 and 5 resulting in a graph that
is no longer isomorphic to C4. We call such edges false edges.

We say that a graph property P is hereditary if, whenever a graph G
has P, so does its every induced subgraph. Similarly, a class C of graphs is
hereditary if, when G ∈ C, all induced subgraphs of G are also in C. (For
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example, every induced subgraph of a line graph is also a line graph, hence
the class of all line graphs is hereditary). Note that if F is a given (finite
or infinite) family of graphs, then the class of all F-free graphs (i.e., graphs
that do not contain an induced subgraph isomorphic to any graph from F),
is a hereditary class.

Now, it is immediate to observe that, for a given k, if L is a k-ESL of
a graph G and G′ is an induced subgraph of G, then the restriction of L
to V (G′) ∪ Kk is a k-ESL of G′. Thus, the property of “having a k-ESL”
is a hereditary property, and the class Ek of all graphs having a k-ESL is a
hereditary class.

There are two ways of characterising hereditary classes of graphs.

• It is a well-known fact that for any hereditary class C there is a family
F of graphs (called “forbidden induced subgraphs”) such that G ∈ C if
and only if G is F-free. Note that such F always exists (the graphs in
F are just those elements of C that are minimal under the partial order
defined by the relation of being an induced subgraph). A well-known
example is the Beineke’s characterisation of line graphs in terms of 9
forbidden induced subgraphs [1].

• Sometimes, it is possible to characterise C in terms of a universal
graph, i.e., a graph G such that G ∈ C if and only if G is an induced
subgraph of G. Note that, unlike with the forbidden subgraphs, there
are hereditary classes for which a universal graph does not exist.

In this paper, we will address the question of characterising the class Ek
of all graphs having a k-ESL in either of the above ways. While a forbidden
subgraph characterisation seems to be complicated (note that even for k = 2,
the family F for E2 contains all cycles and the claw (K1,3) since neither of
these graphs has a 2-ESL, hence F is infinite), we will succeed in finding
a universal graph for a generalised version of the problem. Describing the
families of forbidden subgraphs for Ek, k ≥ 3, remains an open problem.

1.2 Hyperdiamond

A hyperdiamond is a generalisation of the honeycomb grid and is defined by
the following construction.

1. H1 is one edge (i.e., K2).

2. Take a doubly infinite sequence of copies of Hi:
. . . , H−2i , H−1i , H0

i , H
1
i , H

2
i , . . .
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3. Colour the vertices with 2 colours (black and white) so that corre-
sponding vertices in Hj

i and Hj+1
i have different colours.

4. For every j, join every black vertex in Hj
i to its corresponding (white)

vertex in Hj+1
i with a copy of H1, and denote the resulting graph as

Hi+1.

So H1 is a single edge, H2 is an infinite path, H3 is the infinite honeycomb
grid, H4 is the infinite diamond (sometimes also called the “diamond struc-
ture”). Figure 1 shows the infinite honeycomb grid H3 being constructed
from copies of the path H2, and the infinite diamond structure being con-
structed from copies of H3.
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Figure 1: The honeycomb grid H3 and the diamond structure H4

By the above construction of Hk, we immediately observe that, for i = 1,
the sequence given in Step 2 is an infinite matching, denoted M1, and for
each i = 2, . . . , k, in Step 4, a perfect matching, denoted Mi, is added to join
the copies of Hi−1. Thus, for any k ≥ 2, the matchings M1, . . . ,Mk define a
decomposition of E(Hk) into k perfect matchings. This decomposition will
be called the canonical decomposition of Hk. Obviously, removing any one
of the matchings M1, . . . ,Mk from the Hk will leave an infinite number of
copies of Hk−1.

Note that, from a purely geometrical point of view, H3 is 2-dimensional
(being in the plane), and H4 is 3-dimensional (being a crystallographic struc-
ture). However, for our purposes, we will consider k (i.e., the number of
perfect matchings in a canonical decomposition) to be the dimension of Hk.

All graphs considered herein, except the hyperdiamonds, will be finite.

5



In this article we provide a characterisation of graphs having a k-ESL. In
Section 2, we investigate exclusive sum graphs for k ≤ 3, while in Section 3
we extend this result to all k ≥ 1. A surprising feature of these results is
the central role of a universal graph played by the hyperdiamond structure.

2 Graphs having a 3-ESL

First we consider the (easy) cases of graphs having 1-ESL and 2-ESL. Since
the maximum degree of the graph sets the lower bound for the exclusive
sum number, the only graph with a 1-ESL is K2, and a graph has a 2-ESL
if and only if it is a path of length at least two [8]. Thus, the first nontrivial
case is that of having a 3-ESL.

Let ue and ve represent end vertices of an edge e of G, witnessed by an
isolate we. Define the function f on the edges of G as the sum of labels of
end points of an edge minus the edge colour (i.e., the label of the witnessing
isolate), formally f(e) = L(ue) + L(ve)− L(we) = L(ue) + L(ve)− χ(e). In
an exclusively labelled sum graph,

f(e) = 0, for every e ∈ E(G). (1)

To simplify the notation, for the rest of the paper, if no confusion can
arise, we will identify a vertex with its label, i.e., we will simply write f(e) =
ue + ve − we.

Sum labellings and exclusive sum labellings are not necessarily unique.
For clarity we will employ the following definitions.

Definition 2.1 A particular labelling is an exclusive sum labelling in which
all labels are distinct positive integers.

Figure 2a) shows an example of a particular labelling.

Definition 2.2 A general labelling is an exclusive sum labelling in which
the vertices are labelled with parameters indicating a relationship between
labels such that equation (1) holds for all edges.

Figure 2b) gives an example of a general labelling for the graph of
Figure 2a). Setting x = 1, a = 6, b = 10, c = 14 gives the particular la-
belling as shown in Figure 2a). Another particular labelling can result from
setting x = 3, a = 11, b = 22, c = 30. Other particular labellings can
be obtained from appropriate settings of any three of x, a, b, c and solving
(a− x) + (b− x)− c = 0.
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Definition 2.3 A generic labelling is a general labelling such that equation
(1) is satisfied for all choices of parameters x, a, b, .... In the case where the
labelling requires k isolates, we may use the term generic k-labelling.

•
5

•
9

• 1

•13...............................................................................................................................................................................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........

• 14

• 10

• 6

a)

•
a-x

•
b-x

• x

• c-x...............................................................................................................................................................................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........

• c
• b
• a

b)

Figure 2: Particular and general labellings

Figure 3a) gives an example of a generic labelling. Apart from x (which
is arbitrarily chosen) each of the vertices is chosen so that the incident edge
weight satisfies equation (1). First place a−x, b−x, c−x, then c−b+x and
c−a+x; finally, b−c+a−x is chosen so that the right edge has weight b. The
final edge must now satisfy equation (1), i.e., (c−b+x)+(b−c+a−x)−a = 0,
which is identically true. For a generic labelling, the only restriction on the
choice of parameters x, a, b, c is that the vertex labels must be distinct,
positive integers.
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b

c

c

a a

c

c
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Figure 3: A generic labelling and the corresponding canonical labelling

As another example, we show that C4, the cycle of length 4, has no
generic 3-labelling. Thus, suppose the opposite, and let C4 = uvwzu. By
symmetry, we can choose L(u) = x, χ(u, v) = a and χ(u, z) = b. This gives
L(v) = −x+a and L(z) = −x+ b. Now, since necessarily χ(v, w) 6= χ(u, v),
for χ(v, w) we have either χ(v, w) = b or χ(v, w) = c. In the first case we get
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L(w) = x−a+b, implying f(wz) = L(w)+L(z)−χ(wz) = −a+2b−χ(wz)
and, since χ(wz) ∈ {a, c}, none of these possibilities gives f(wz) = 0 for all
values of x, a, b, c. In the second case similarly L(w) = x− a+ c, and, since
χ(wz) = a, we have f(wz) = L(w) +L(z)−χ(wz) = −2a+ b+ c 6= 0. Thus,
C4 has no generic 3-labelling.

The following concept will be needed throughout the rest of the paper
and therefore we define it for arbitrary k ≥ 1.

Definition 2.4 We define a specific type of generic labelling, φ on Hk,
called a canonical labelling. Let M1,M2, . . . ,Mk be the canonical decompo-
sition of Hk into k perfect matchings. We define a labelling φ on V (Hk) by
the following construction:

(i) select (arbitrarily) an origin and label it L(u) := x,

(ii) label the isolates with a1, a2, . . . , ak, respectively,

(iii) colour every edge e ∈ E(Mi) with colour χ(e) = ai, i = 1, 2, . . . , k,
(or, equivalently, assign to the edges of Mi the isolate labelled ai as a
witness, i = 1, 2, . . . , k),

(iv) for every edge uv ∈ E(Hk) such that L(u) is already defined while L(v)
is not, set L(v) := χ(uv)− L(u).

Then each vertex u ∈ V (Hk) is labelled with an expression

ψ ∗ x+ α1 ∗ a1 + α2 ∗ a2 + . . .+ αk ∗ ak,

where ψ ∈ {−1, 1}, and we set φ(u) = (ψ, α1, α2, . . . , αk). When we need to
specify the dimension, we may speak of a canonical k-labelling so that, when
dealing with graphs in E3 we may refer to a canonical 3-labelling.

In terms of the canonical labelling φ on H3, the origin and its three adja-
cent vertices are labelled (1, 0, 0, 0), (−1, 1, 0, 0), (−1, 0, 1, 0), (−1, 0, 0, 1). Of
course, the canonical labelling of H3 can be restricted to any finite induced
subgraph G of H3, and it immediately gives a generic 3-labelling of G, see
Fig. 3b).

If G is a graph embedded in H3 and u, v ∈ V (G), then define the grid
distance dH(u, v) as the distance between u and v in H3. Note that dH(u, v)
can be different from dG(u, v) and depends on the embedding. In Figure 4
dG(u, v) = 12 while dH(u, v) = 2.

The following fact is straightforward.
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Figure 4: The path P13 embedded in H3

Observation 2.5 Consider G embedded in H3 with origin u (i.e., φ(u) =
(1, 0, 0, 0)). Then for v ∈ V (G) with φ(v) = (±1, α, β, γ) we have dH(u, v) =
|α|+ |β|+ |γ|.

For example, in the graph in Fig. 3, for the left-bottom vertex v with
φ(v) = (1,−1,−1, 2), we have α = −1, β = −1 and γ = 2, hence dH(u, v) =
1 + 1 + 2 = 4.

The main result of this section is the following theorem.

Theorem 2.6 A graph G has a generic 3-labelling if and only if G is an
induced subgraph of H3.

Proof
(⇐) A generic 3-labelling of G is obtained as a restriction of a canonical

labelling of the H3 to V (G).

(⇒) We prove the following slightly stronger statement.

If G has a generic 3-labelling ϕ, then G can be embedded in H3 (as an in-
duced subgraph) in such a way that ϕ is a restriction of a canonical labelling
of H3.

To anchor the induction, observe that it is easily seen that the theorem
is true e.g. for graphs of order at most 3.

Assume that the statement does not hold and let G be the smallest order
exclusive sum graph for which the theorem does not hold. That is, G is a
smallest graph that has a generic 3-labelling but which is not embeddable
in H3 as an induced subgraph. Then for any vertex z ∈ V (G), G − z is
embeddable in H3. Choose z to be of degree 1 or 2. This is always possible
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since we are considering finite graphs (if G was 3-regular, then G− z would
be an induced subgraph of H3 with 3 vertices of degree 2 and no vertex of
degree 1, which is not possible).

For d(z) = 1, remove z and the graph G−z is embeddable. If we replace
z then, since G has a generic exclusive sum labelling, z cannot induce any
false edges and so G must have been embeddable.

For d(z) = 2, let u, v be the neighbours of z. By assumption, G − z is
embeddable in such a way that ϕ is a restriction of a canonical labelling
of H3. Suppose, without loss of generality that edge zu has colour a and
zv has colour b (in the generic labelling of G) and that the canonical la-
belling of H3 has u as origin (φ(u) = (1, 0, 0, 0)). Then we have φ(z) =
(−1, 1, 0, 0), that is, a − x, and φ(v) = (1,−1, 1, 0), that is, b − a + x.
But in G−z, φ is a canonical labelling so, by Observation 2.5, dH(u, v) = 2.

Let y be the common neighbour of u, v in H3. Then y 6= z for otherwise
G is already embedded in H3. If y ∈ V (G), then y ∈ V (G − z) and since
G − z is induced in H3, both yu, yv ∈ E(G − z). In this case C = zvyuz
is a C4 in G which is impossible since C4 has no generic 3-labelling. Hence
y 6∈ V (G) and so y = z and G is embedded in H3.

It remains to show that, after the embedding, ϕ is a restriction of a
canonical labelling of H3. This is true for ϕ on G − z, so let φ be the
canonical labelling of H3 such that φ(w) = ϕ(w), for every w ∈ G− z. We
need to show that ϕ(z) = φ(y). Recall that we have ϕ(u) = φ(u) (= x)
and ϕ(v) = φ(v). Let ak and bk be the colours (in φ) of the edges uy and
vy, respectively. Then from the path uzv we have ϕ(v) = b − a + x while
from the path uyv we have ϕk(v) = bk − ak + x. Since both ϕ and φ are
generic, they must be the same function, from which b = bk and a = ak, so
ϕ(z) = b− x = bk − x = φ(z). 2

For a graph to have an exclusive sum labelling, the vertices must be
labelled with distinct positive integers. Therefore any generic (or even gen-
eral) labelling must have a solution in the positive integers. To this end we
will employ the following theorem from [9].

Theorem 2.7 If L is an exclusive sum graph labelling of a graph H in
G = H ∪ Kr then so is the labelling L′(u) = k1L(u) + k2 for u ∈ H and
L′(u) = k1L(u) + 2k2 for u ∈ Kr, where k2 is any integer which results only
in positive values in L′ and k1 is any positive integer that does not divide
6k2.

Since the generic labelling may involve negative coefficients of a, b, c, the
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above theorem allows us, by judicious choice of k1 and k2, to make sure all
vertices have positive integer labels.

Theorem 2.8 Any graph bearing a generic 3-labelling has also a 3-ESL,
i.e., is an exclusive sum graph with 3 isolates.

Proof For proof it is sufficient to show that in a generic 3-labelling there
exists a choice of exclusive sum isolates, a, b, c, such that all vertices are
labelled with distinct positive integers.

First we make sure that all labels are distinct. To each vertex in a graph
G we assign its generic label, which is a linear function of isolates a, b, c. If
ϕ is the generic labelling, then we can describe the label of a vertex u as
ϕu(a, b, c). In order to ensure that all labels are distinct, we need to avoid
the following:

ϕu(a, b, c) = ϕv(a, b, c), u, v ∈ V (G). (2)

Each equation (2) gives a linear equation in a, b, c which can be interpreted
geometrically as a plane in Euclidean 3-space with orthogonal axes, a, b, c.
For a graph on n vertices, this gives

(
n
2

)
equations, i.e.,

(
n
2

)
planes in Eu-

clidean 3-space. Additionally to this, the conditions a 6= b, a 6= c and b 6= c,
that have to be also satisfied, give additional three planes in E3.

Thus we have finitely many linear equations (O(n2) equations in three
variables for a graph on n vertices embeddable in H3) and we need to find
a, b, c so that none of these equations is satisfied. Equivalently, we have a
finite number of planes in E3 and we must find a point (a, b, c) in the first
octant with integer coordinates that is not incident with any of them. Of
course this is always possible. Therefore we have distinct, positive integers
a, b, c and distinct integer vertex labels.

We now need to ensure that the labels of all vertices are positive. The-
orem 2.7 allows us to choose k1 and k2 in a linear transformation so that
the labels of all vertices are increased sufficiently that all labels are positive.
We now have an exclusive sum labelling with 3 isolates. 2

3 Graphs having a k-ESL

In Section 2, we considered graphs in E3. We now extend these results to
Ek.

The main result in this section is given in the following theorem.
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Theorem 3.1 A graph G has a generic k-labelling if and only if G is an
induced subgraph of Hk.

Proof By construction, the infinite hyperdiamond Hk has k isolates and
each vertex in the hyperdiamond is labelled by a function φ which is a
k + 1-tuple (the k isolates plus the origin). Call these isolates a1, . . . , ak.

(⇐) The generic labelling of G is given as a restriction of a canonical
labelling of the Hk.

(⇒) Proof will be by induction on k (and therefore, the dimension of
the hyperdiamond). Assume, by the inductive step, that the theorem is
true for all hyperdiamonds up to dimension k. Consider a graph bearing
a generic labelling that requires k + 1 isolates a1, a2, . . . , ak+1, ai 6= aj , to
support an exclusive sum labelling but that cannot be embedded in Hk+1,
and choose such a graph with minimal number of vertices. This means
that, by the minimality assumption, embedding the graph induces one or
more false edges, that is, edges that are not elements of the hyperdiamond
structure. Take one of these unwanted edges and, if this edge is witnessed
by an isolate ai, then remove from the hyperdiamond all edges witnessed
by some isolate aj 6= ai (recall that these edges form a matching). Then,
if the false edge remains, we have a hyperdiamond in k dimensions and
a graph with a generic exclusive sum labelling requiring ak isolates that
cannot be embedded, contradicting the induction hypothesis. However aj
is chosen arbitrarily, so removing any matching associated with an isolate
must remove the false edge associated with ai. This is impossible, so graphs
with a generic labelling requiring k + 1 isolates can be embedded in Hk+1.
2

Recall that for a graph to have an exclusive sum labelling, the vertices
must be labelled with distinct positive integers. Therefore any generic (or
even general) labelling must have a solution in the positive integers.

Theorem 3.2 Any graph bearing a generic k-labelling has also a k-ESL,
i.e., is an exclusive sum graph with k isolates.

Proof As in the case of H3, for proof it is sufficient to show that in a
generic k-labelling there exists a choice of labels for isolates a1, a2, . . . , ak
such that all vertices are labelled with distinct positive integers.

The proof follows the same reasoning as the case for H3 (Theorem 2.8).
Here vertices with non-distinct labels can be represented as a linear equation
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in the k labels of the isolates. This can be viewed as (k−1)-dimensional hy-
perplanes in k-dimensional space. As before, we are considering only finitely
many (O(n2)) linear equations so visually only finitely many hyperplanes.
We can easily choose a point in the positive sector (2k-dant), so that it is
not coincident with any hyperplane. Now we have positive, distinct, integer
isolates and distinct vertex labels and we can again employ Theorem 2.7,
if necessary, to ensure that all vertex labels are positive. Thus we have an
exclusive sum labelling. 2

4 Non-embeddable exclusive sum graphs

In Sections 2 and 3, we have described, for k ≥ 1, all graphs having a generic
k-labelling, and we have shown that
• these graphs are exactly all induced subgraphs of the Hk, and
• each of these graphs also has a (particular) k-ESL.

However, there still remain graphs that have a (particular) k-ESL but not
a generic k-labelling. These, of course, do not embed into Hk. For exam-
ple, Miller et al. proved that all cycles can be labelled exclusively with no
more than 3 isolates [8], but clearly not all cycles can be embedded in the
honeycomb grid H3.

However, all graphs that have a k-ESL have also a spanning subgraph
which has a generic k-labelling and hence can be embedded into Hk, and
from which the remaining edges can be determined by solving the corre-
sponding linear equations. See Figure 5 for an example of a chorded 5-cycle
with a pendant edge.
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(1,0,0,0) (-1,0,1,0) (1,1,-1,0)

(-1,1,0,0)
(1,-1,1,0)

(1,-1,0,1)

•(0,0,0,1)

•(0,0,1,0)

•(0,1,0,0)

b)

Figure 5: Non-embeddable graph and its spanning subgraph that lies in H3
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This example motivates our next result which shows that there are no
graphs with a k-ESL but without a generic k-labelling among trees.

Proposition 4.1 Let T be a tree and k ∈ N. Then T has a k-ESL if and
only if T has a generic k-labelling.

Proof
(⇐) Assume that T has a k-ESL. Each edge in T may be considered as
coloured by the label of its isolate. Choose one vertex in the tree to be the
origin, O, and label it (1,0,. . . ,0), where the 1 is the coefficient of some yet
to be determined constant and the k 0’s are the initial coefficients of the k
isolates. For each remaining vertex u ∈ T assign a generic label by following
the colours of the edges from O, that is, follow the path to u from O adding
1 to each coordinate associated with an edge that is transversed on the path.
The generic labels are unique since if a vertex bears two different labels that
would indicate that it was reached from O in two different ways, resulting
in a cycle, which is impossible in a tree.

The generic labelling cannot induce false edges in T since any induced
edge must be associated with an isolate and so be witnessed in the specific
labelling.

(⇒) This is a direct application of Theorem 3.2. 2

Since all connected graphs have a spanning tree, Proposition 4.1 implies
that any graph G with a particular k-ESL has a spanning subgraph F with
a generic k-labelling. This spanning subgraph may not necessarily be a tree
and may not require all k isolates for labelling. However, as the next theorem
demonstrates, the k-ESL of G can always be constructed by embedding F
in Hk and solving the restriction of the canonical labelling for the remaining
edges in G, which appear as false edges in Hk.

Consequently, our last result will show that graphs with k-ESL are ex-
actly those which can be obtained by taking an induced subgraph of Hk

with the corresponding restriction of the canonical labelling, and substitut-
ing appropriate specific values for the parameters.

Theorem 4.2 Let G be a graph and L a k-ESL of G. Then there is a
spanning subgraph F ⊂ G having a generic k-labelling and such that F can
be embedded in Hk in such a way that L = φ(x, a1, a2, . . . , ak) for some
values of x, a1, a2, . . . , ak, where φ is the canonical labelling of Hk.

Proof
Consider a graph G with a k-ESL L, let a1, . . . , ak be the isolates witnessing
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the edges of G, and let T be a spanning tree of G. The labelling L obviously
determines an edge-colouring of G, hence also of T (where the colour of
an edge is the witnessing isolate ai). Choose an origin x and let ϕ be the
generic labelling defined on the edges of T by x and by the colours of the
edges. Since T is not necessarily an induced subgraph of G, it is possible
that for some u, v ∈ V (G) with uv /∈ E(T ) we have ϕ(u) + ϕ(v) = ai for
some isolate ai; however, since ϕ is constructed from a k-ESL L of G, in such
case necessarily uv ∈ E(G). Let F be the graph obtained from T by adding
all such edges uv. Then F is a spanning subgraph of G and ϕ is a generic k-
labelling of F . Hence, by Theorem 3.1, F can be embedded in Hk such that
ϕ is a restriction of a canonical labelling φ of Hk. Now, substituting in φ the
specific values a1, . . . , ak and L(x), we obtain that L = φ(x, a1, a2, . . . , ak).
This can be done since we know the graph is an element of Ek. 2

For example, in Figure 5b) we need to solve for the 2 edges that are
missing from Figure 5a). The top edge must be coloured (0, 1, 0, 0) since
the end vertices are incident with each of the remaining colours while the
bottom edge must be coloured (0, 0, 0, 1) for the same reason. So we have
(reverting to the x, a, b, c notation),

(x− a+ c) + (x− a+ b)− a = 0

2x− 3a+ b+ c = 0

and

(x− a+ b) + (−x+ b)− c = 0

−a+ 2b− c = 0

The positive integer values given in Figure 5a) provide solutions for
x, a, b, c and thus a labelling for the (non-embeddable) graph.

Note A proper k-edge-colouring of a graph G that is not an induced
subgraph of Hk does not imply that G has a k-ESL. Figure 6 shows a graph
that is 3-edge-colourable but no arrangement of colours a, b, c will result in
equations that can be solved to provide distinct positive integer labels on
the vertices. In this arrangement colouring one of the edges coloured c with
a new colour (i.e., introducing a new isolate) d allows for a 4-ESL, a minimal
(in terms of number of isolates) labelling. This graph is also critical in the
sense that removal of any vertex results in a graph with a 3-ESL.
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Figure 6: Critical graph with 4-ESL

5 Conclusion

However, even having a maximal spanning subgraph embeddable in Hk is
not enough to ensure that the graph has a particular k-labelling. Each of
the graphs in Figure 7, although of differing orders, requires a minimum of 7
isolates to support an exclusive sum labelling while they all possess spanning
subgraphs that can be embedded in H3.
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Figure 7: Three graphs, each requiring 7 isolates for an exclusive sum la-
belling

Possible labellings are
V (K5) - 1, 5, 9, 13, 17 with isolates 6, 10, 14, 18, 22, 26, 30
V (W7) - centre 16 and (cyclic) 28, 25, 19, 22, 1, 37, 7 with isolates 17, 23,
35, 38, 41, 44, 53
V (K2,2,2) - (1, 5), (9, 21), (13, 17) with isolates 10, 14, 18, 22, 26, 34, 38.

The fact that the embedding dimension of a maximal spanning subgraph
of a graphG gives no information about the number of isolates required forG
to support an exclusive sum labelling then begs the following open question.

Open Question 1. How difficult is it to determine the exclusive sum
number of a graph without actually providing an exclusive sum labelling?

As mentioned at the conclusion of Subsection 1.2, a forbidden subgraph
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characterisation for Ek appears to be difficult. We noted that, even for k = 2
the family of forbidden subgraphs for E2 is infinite containing, as it does, all
cycles as well as the claw K1,3. While we suspect the family of forbidden
subgraphs for Ek is infinite for all k, we pose a perhaps more approachable
problem.

Open Question 2. Describe the family of forbidden subgraphs for E3.
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