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Abstract

A sum graph G is a graph with a mapping of the vertex set of G onto a set of positive
integers S in such a way that two vertices of G are adjacent if and only if the sum
of their labels is an element of S. In an ezclusive sum graph the integers of S that
are the sum of two other integers of S form a set of integers that label a collection
of isolated vertices associated with the graph G. A graph bears a k-exclusive sum
labelling (abbreviated k-ESL), if the set of isolated vertices is of cardinality k.

In this paper, observing that the property of having a k-ESL is hereditary, we
provide a characterisation of graphs that have a k-exclusive sum labelling, for any
k > 1, in terms of describing a universal graph for the property.
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1 Introduction

All graphs considered here are simple and undirected unless otherwise stated.
All graphs are also connected except for the isolated vertices necessary to
maintain the labelling. We will define terms specific to this article, for all
other terms used the reader is referred to [2].

A sum graph G is a graph with a mapping of the vertex set of G onto a
set of positive integers S in such a way that two vertices of G are adjacent if
and only if the sum of their labels is an element of S. More formally, for a
sum labelling L : V(G) — S, we have u,v € V(G),uwv € E(G), if and only if
there is a w € V(G) such that L(u)+ L(v) = L(w). In this case the vertex w
is said to be a working vertexr whose work is to witness the edge uwv.

Sum graphs were introduced by Harary in [4] as a terse way of storing
and communicating graphs. An easy observation is that they must be discon-
nected; the vertex with the largest label must be an isolate. Any graph can be
sum labelled by adding sufficiently many isolated vertices. The sum number
of a graph G, o(G) is the smallest cardinality of a set of isolates that must be
included with G in order for it to have a sum labelling.

A sum graph with all working vertices being confined to the set of isolates
was postulated in [7] and given the name exclusive sum graph. More precisely,
for a given positive integer k, a k-exclusive sum labelling (abbreviated k-ESL)
of a graph G is a sum labelling L of the graph G U K}, such that, for u,v €
V(G U Ky), we have uwv € E(G U K}) if and only if L(u) + L(v) = L(w) for
some w € K}, (and, similarly as above, we say that the isolate w witnesses the
edge uv). We will use & to represent the class of graphs having a k-ESL.

Thus, a (given) k-ESL assigns to every edge of G an isolate by which it is
witnessed. This assignment determines an edge colouring of GG, in which the
colour of an edge equals the label of the isolate by which it is witnessed, and
since all labels of vertices have to be distinct, this edge colouring is proper.
Moreover, also conversely, once the assignment of labels to the edges of G (i.e.,
the edge colouring of G) is given, then the labelling L of the vertices of G is
uniquely determined, up to an additive constant (provided G is connected;
otherwise this is true in each component of G). However, note that not every
proper k-edge-colouring of G determines a k-ESL of G: for example, the graph
K3 59 is 4-edge-colourable while any its k-ESL requires k& > 7.

Obviously, if G has a k-ESL, then G has a k’-ESL for every k' > k. The
exclusive sum number of a graph G, €(G) is the smallest k for which G has a k-
ESL. Clearly 0(G) < ¢(G) and, by the above observations on edge-colourings,



X' (G) < €(G), where X'(G) is the edge chromatic number (also called the
chromatic index) of G. By Vizing’s theorem then ¢(G) > X'(G) > A(G).
Exclusive sum numbers are known for various special families of graphs. For

details, we refer to the survey [8] by Ryan and to the dynamic survey [3] by
Gallian.

We say that a graph property P is hereditary if, whenever a graph G has P,
so does every its induced subgraph. Similarly, a class C of graphs is hereditary
if, when G € C, all induced subgraphs of G are also in C. Note that if F is
a given (finite or infinite) family of graphs, then the class of all F-free graphs
(i.e., graphs that do not contain an induced subgraph isomorphic to any graph
from F), is a hereditary class.

Now, it is immediate to observe that, for a given k, if L is a k-ESL of
a graph G and G’ is an induced subgraph of G, then the restriction of L
to V(G') U K}, is a k-ESL of G’. Thus, the property of “having a k-ESL”
is a hereditary property, and the class & of all graphs having a k-ESL is a
hereditary class.

There are two ways of characterising hereditary classes of graphs: in terms
of forbidden induced subgraphs, i.e., a family F of graphs such that G € C if
and only if G is F-free, and (sometimes also) in terms of a universal graph,
i.e., a graph G such that G € C if and only if GG is an induced subgraph of G.
While a forbidden subgraph characterisation seems to be complicated (note
that even for £ = 2, the family F for &, consists of all cycles and the claw K 3,
hence is infinite), we will succeed in finding a universal graph for a generalised
version of the problem. The following structure will play a crucial role in the
characterisation.

Definition 1.1 A hyperdiamond is a generalisation of the honeycomb grid
and 1s defined as follows.

(i) Hy is one edge (i.e., Ks).
(ii) Take an infinite sequence of copies of H;: ..., H; % H ' HY H} H?, ...
(iii) Colour the vertices with 2 colours (black and white) so that corresponding
vertices in H! and H!™' have different colours.
(iv) For every j, join every black vertex in H! to its corresponding (white)
vertex in HZ-JJrl with a copy of Hy.

So H is a single edge, H, is an infinite path, Hj is the infinite honeycomb grid,
H, is the infinite diamond (sometimes also called the “diamond structure”).
Figure 1 shows Hj3 being constructed from copies of the path H,, and Hy being
constructed from copies of the Hs.



Fig. 1. The honeycomb grid Hs and the diamond structure Hy

By the definition of Hjy, we easily observe that, for i = 1, the sequence
given in Step 2 is an infinite matching, denoted M, and for each i = 2,... k,
in Step 4, a perfect matching, denoted M;, is added to join the copies of
H;_ 1. Thus, for any k£ > 2, the matchings My, ..., M, define a decomposition
of E(Hy) into k perfect matchings. This decomposition will be called the
canonical decomposition of Hy. Obviously, removing any one of the matchings
My, ..., M, from the H; will leave an infinite number of copies of Hy_;.

Note that, from purely geometrical point of view, Hjs is 2-dimensional
(being in the plane), and Hy is 3-dimensional (being a crystallographic struc-
ture). However, for our purposes, we will consider k (i.e., the number of perfect
matchings in a canonical decomposition) to be the dimension of Hy.

All graphs considered herein, except the hyperdiamonds, will be finite.

In this article we provide a characterisation of graphs having a k-ESL for
any k > 1. A surprising feature of the result is the central role of a universal
graph played by the hyperdiamond structure.

2 Graphs having a k-ESL

First we consider the (easy) cases of graphs having 1-ESL and 2-ESL. Since
A(G) < €(G), the only graph with 1-ESL is K5, and a graph has a 2-ESL if
and only if it is a path [7]. Thus, the first nontrivial case is that of a 3-ESL.

Let u, and v, represent end vertices of an edge e of G, witnessed by an
isolate w,. Define the function f on the edges of G' as the sum of labels of
end points of an edge minus the edge color (i.e., the label of the witnessing
isolate), formally f(e) = L(u.) + L(v.) — L(w,) = L(ue) + L(ve) — x(e). In an



exclusively labelled sum graph,
(1) f(e) =0, Ve € E(G).

Sum labellings and exclusive sum labellings are not necessarily unique. For
clarity we will employ the following definition.

Definition 2.1 A particular labelling is an exclusive sum labelling in which
all labels are distinct positive integers.

A general labelling is an exclusive sum labelling in which the vertices are
labelled with parameters indicating a relationship between labels such that equa-

tion (1) holds for all edges.

Figure 2a) shows an example of a graph with a particular labelling, and
Figure 2b) gives an example of a general labelling for the same graph. Setting
r = 1,a = 6,b = 10,¢ = 14 gives the particular labelling in Figure 2a).
Another particular labelling can result from setting x = 3,a = 11,b = 22,¢ =
30. Other particular labellings can be obtained from appropriate settings of
any three of x,a,b, c and solving (a — z) + (b —z) — c = 0.
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Fig. 2. Particular and general labellings

Definition 2.2 A generic labelling is a general labelling such that equation
(1) is satisfied for all choices of parameters x,a,b, .... In the case where the
labelling requires k isolates, we may use the term generic k-labelling.

Figure 3a) gives an example of a graph with a generic 3-labelling.
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Fig. 3. A generic labelling as a restriction of a canonical labelling



Now we introduce a special type of a generic labelling on Hj,.

Definition 2.3 Let k > 1, let My, Ms, ..., M, be the canonical decomposition
of Hy, and let ¢ be a labelling on V (Hy) defined by the following construction:

(i) select an origin and label it L(u) := x,

(ii) label the isolates with ay, as,...,ax, respectively,

(iii) color every edge e € E(M;) with color x(e) = a;, i = 1,2,...k, (or,
equivalently, assign to the edges of M; the isolate labelled a; as a witness,
i=1,2,....k),

(iv) for every edge uwv € E(Hy) such that L(u) is already defined while L(v)
is not, set L(v) := x(uv) — L(u).

Then each vertex w € V(Hy,) is labelled with an expression ¢+ x4y x aq + ag *
as + ...+ ag * ag, where Y € {—1,1}, and we set ¢(u) = (¥, a1, 0, ..., ).
The labelling ¢ is called the canonical labelling of Hy.. When we need to specify
the dimension, we speak of a canonical k-labelling.

For example, in terms of the canonical labelling ¢ on Hj, the origin and its
three neighbours are labelled (1,0,0,0),(-1,1,0,0),(-1,0,1,0),(—1,0,0,1).
Of course, the canonical labelling of Hj, can be restricted to any finite induced
subgraph G of Hj, and it immediately gives a generic k-labelling of G (see
Fig. 3b) for k = 3).

The main result of this paper is given in the following theorem.

Theorem 2.4 A graph G has a generic k-labelling if and only if G is an
iduced subgraph of Hjy,.

Recall that for a graph to have an exclusive sum labelling, the vertices
must be labelled with distinct positive integers. Therefore any generic (or
even general) labelling must have a solution in the positive integers. The
following result shows that this is always possible.

Theorem 2.5 Any graph bearing a generic k-labelling has also a k-ESL, i.e.,
15 an exclusive sum graph with k isolates.

3 Non-embeddable exclusive sum graphs

In Section 2, we have described, for & > 1, all graphs having a generic k-
labelling, and we have shown that

e these graphs are exactly all induced subgraphs of the Hj, and

e each of these graphs also has a (particular) k-ESL.



However, there still remain many graphs that have a (particular) k-ESL but
not a generic k-labelling. The next result shows that there are no such graphs
among trees.

Proposition 3.1 Let T be a tree and k € N. Then T has a k-ESL if and
only if T has a generic k-labelling.

Since all connected graphs have a spanning tree, Proposition 3.1 implies
that any graph G with a particular k-ESL has a spanning subgraph F' with
a generic k-labelling. This spanning subgraph may not necessarily be a tree
and may not require all k isolates for labelling. However, as the next theorem
demonstrates, the k-ESL of G can always be constructed by embedding F
in Hy and solving the restriction of the canonical labelling for the remaining
edges in GG, which appear as additional edges, joining vertices of Hy, but not
in Hj, (sometimes called “false edges”). See Figure 4 for an example.
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Fig. 4. Non-embeddable graph and its spanning subgraph that lies in Hj

Thus, answering the original question, we observe that graphs with k-ESL
are exactly those which can be obtained by taking an induced subgraph of Hj
with the corresponding restriction of the canonical labelling, and substituting
appropriate values for the parameters. This characterisation is stated more
precisely in the following theorem.

Theorem 3.2 Let G be a graph and L a k-ESL of G. Then there is a span-
ning subgraph F C G having a generic k-labelling and such that F can be
embedded in Hy in such a way that L = ¢(x,ay,as,...,ax) for some values of
x,a1,as, . ..,a, where ¢ is the canonical labelling of Hy.

4 Conclusion

However, even having a maximal spanning subgraph embeddable in Hj, is not
enough to ensure that the graph has a particular k-labelling. For example,
cach of the graphs K5, W7 and K25 has €(G) > 7, while they all possess
spanning subgraphs that can be embedded in Hz. The fact that the embedding



dimension of a maximal spanning subgraph gives no information about the
value of k necessary to support a k-ESL then begs the following open question.

Open Question 1. How difficult is it to determine the exclusive sum number
of a graph without actually providing an exclusive sum labelling?

As mentioned in Section 1, a forbidden subgraph characterisation for &
appears to be difficult. We noted that, even for k = 2 the family of forbidden
subgraphs for &, is infinite containing, as it does, all cycles as well as the claw
K, 3. While we suspect the family of forbidden subgraphs for & is infinite for
all k, we pose a perhaps more approachable problem.

Open Question 2. Describe the family of forbidden subgraphs for &s.
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