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Abstract

We show that some sufficient conditions for hamiltonian properties of claw-free

graphs can be substantially strengthened under an additional assumption that G is

hourglass-free (where hourglass is the graph with degree sequence 4, 2, 2, 2, 2).

Let G be a 3-connected claw-free and hourglass-free graph of order n. We show

that

(i) if G is P20-free, Z18-free, or N2i,2j,2k-free with i + j + k ≤ 9, then G is

hamiltonian,

(ii) if G is P12-free, then G is Hamilton-connected,

(iii) G contains a cycle of length at least min{σ12(G), n}, unless L−1(cl(G)) has

a nontrivial contraction to the Petersen graph,

(iv) if σ13(G) ≥ n+ 1, then G is hamiltonian, unless L−1(cl(G)) has a nontrivial

contraction to the Petersen graph.

Here Pi denotes the path on i vertices, Zi (Ni,j,k) denotes the graph obtained by

attaching a path of length i ≥ 1 (three vertex-disjoint paths of lengths i, j, k ≥ 1)

to a triangle, σk(G) denotes the minimum degree sum over all independent sets of

size k, and L−1(cl(G)) is the line graph preimage of the closure of G.
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1 Introduction.

We basically follow the most common graph-theoretical terminology and notation and for

concepts not defined here we refer the reader to [2].

Specifically, by a graph we always mean a simple finite graph G = (V (G), E(G)); in

some situations, where we admit multiple edges (specifically, in Subsection 3.3), we speak

about a multigraph.

We use NG(x) to denote the neighborhood and dG(x) to denote the degree of a vertex

x ∈ V (G). A pendant vertex is a vertex of degree 1, and a pendant edge is an edge

having a pendant vertex. We denote Vi(G) = {x ∈ V (G)| dG(x) = i}, V≤i(G) = {x ∈
V (G)| dG(x) ≤ i}, and V≥i(G) = {x ∈ V (G)| dG(x) ≥ i}. We use δ(G) to denote the

minimum degree of G, and, for a positive integer k, we set σk(G) = min{
∑

x∈I dG(x)| I ⊂
V (G) independent, |I| = k} if G contains an independent set of size k, and σk(G) = ∞
otherwise. For M ⊂ V (G), 〈M〉G denotes the induced subgraph on M . If F,G are graphs,

we write F ⊂ G if F is a subgraph of G, F
IND

⊂ G if F is an induced subgraph of G, and

F ' G if F and G are isomorphic. By a clique we mean a complete subgraph of G, not

necessarily maximal, and we say that a vertex x ∈ V (G) is simplicial if 〈NG(x)〉G is a

clique.

For a set X ⊂ E(G), an X-contraction of G is the graph G|X obtained from G

by identifying the vertices of each edge in X and removing the resulting loops. For a

connected subgraph F ⊂ G, we set G|F = G|E(F ), we use con(F ) to denote the vertex in

G|F to which F is contracted, and we also say that F is the contraction preimage of the

vertex v = con(F ), denoted F = con−1(v). Finally, if F and G are graphs, we say that G

has a nontrivial contraction to F if there is X ⊂ E(G) such that G|X ' F and for every

v ∈ V (F ), con−1(v) is nontrivial.

Throughout the paper, c(G) denotes the circumference of G, i.e., the length of a

longest cycle in G. A graph G is hamiltonian if c(G) = |V (G)|, i.e., if G contains a

hamiltonian cycle, and G is Hamilton-connected if, for any x, y ∈ V (G), G contains a

hamiltonian (x, y)-path, i.e., an (x, y)-path containing all vertices of G.

If F is a family of graphs, we say that G is F-free if G does not contain an induced

subgraph isomorphic to a member of F , and the members of F are in this context referred

to as forbidden induced subgraphs. Specifically, for F = {K1,3}, we say that G is claw-free.

Throughout, Pi denotes the path on i vertices. Further graphs often used as forbidden

induced subgraphs are shown in Fig. 1; here the graph Γ0 is called the hourglass, Bi,j the
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Figure 1: The graphs Γ0, Zi, Bi,j and Ni,j,k
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generalized bull and Ni,j,k the generalized net.

If H is a graph (multigraph), then the line graph of H, denoted L(H), is the graph with

E(H) as vertex set, in which two vertices are adjacent if and only if the corresponding

edges have a vertex in common. Recall that every line graph is claw-free. It is well-

known that if G is a line graph of a graph, then the graph H such that G = L(H) is

uniquely determined (with one exception of G = K3). The graph H for which L(H) = G

will be called the preimage of G and denoted H = L−1(G). We will analogously write

v = L(e) and e = L−1(v) for a vertex v ∈ V (G) and its corresponding edge e ∈ E(H).

However, note that in line graphs of multigraphs this is, in general, not true, as there can

be nonisomorphic (multi)graphs with the same line graph. We will discuss this in more

detail in Subsection 3.3, where this will be needed.

A vertex x ∈ V (G) is said to be eligible if 〈NG(x)〉G is a connected noncomplete

graph. We will use VEL(G) to denote the set of all eligible vertices of G. For x ∈ V (G),

the local completion of G at x is the graph G∗x = (V (G), E(G) ∪ {uv| u, v ∈ NG(x)})
(i.e., G∗x is obtained from G by adding to 〈NG(x)〉G all missing edges). The closure of

a claw-free graph G is the graph cl(G) obtained from G by recursively performing the

local completion operation at eligible vertices, as long as this is possible (more precisely,

there is a sequence of graphs G1, . . . , Gk such that G1 = G, Gi+1 = (Gi)
∗
x for some vertex

x ∈ VEL(Gi), i = 1, . . . , k − 1, and Gk = cl(G)). We say that G is closed if G = cl(G).

The following result summarizes basic properties of the closure operation.

Theorem A [18]. Let G be a claw-free graph. Then

(i) cl(G) is uniquely determined,

(ii) c(cl(G)) = c(G),

(iii) cl(G) is the line graph of a triangle-free graph.

Thus, the closure operation turns a claw-free graph G into a unique line graph of

a triangle-free graph while preserving the length of a longest cycle (and hence also the

hamiltonicity or nonhamiltonicity) of G.

There are many results on hamiltonian properties of graphs in classes defined in terms

of forbidden induced subgraphs. In this paper, we will consider these questions in 3-

connected graphs. We first summarize some known results.

Theorem B. Let G be a 3-connected claw-free graph.

(i) [17] If G is P11-free, then G is hamiltonian.

(ii) [13] If G is Z8-free, then G is hamiltonian.

(iii) [7] If G is Z9-free, then either G is hamiltonian, or G is isomorphic to the line

graph of the graph obtained from the Petersen graph by adding one pendant edge

to each vertex.

(iv) [22, 10] If G is Ni,j,k-free with i+ j + k ≤ 9, then G is hamiltonian.
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Note that [22] announces an analogous result for 3-connected {K1,3, Bi,j}-free graphs

with i + j ≤ 9 (with a family of exceptions), however, the proof in [22] is based on the

statement that if a graph G is {K1,3, Bi,j}-free, then so is cl(G), which is known not to

be true. Since this is true for {K1,3, Ni,j,k}-free graphs, the proof of (iv) in [22] can be

trusted. (Moreover, note that the statement for {K1,3, Bi,j}-free graphs with i+ j ≤ 8 is

a direct consequence of (iv)).

Theorem C [1]. Let G be a 3-connected {K1,3, P9}-free graph. Then G is Hamilton-

connected.

There are also many results on degree conditions for hamiltonian properties. We list

here the best known ones in 3-connected claw-free graphs.

Theorem D [16]. Let G be a 3-connected claw-free graph. Then

c(G) ≥ min{6 δ(G)− 15, n}.

In [15], M. Li describes families of graphs F1,F2 with the following property.

Theorem E [15]. Let G be a 3-connected claw-free graph of order n ≥ 363 such that

δ(G) ≥ n+ 34

12
.

Then either G is hamiltonian or G ∈ F1 ∪ F2.

For detailed description of the classes F1 and F2 we refer the reader to [15]; here we only

note that for every graph G ∈ F1 ∪ F2, L
−1(cl(G)) has a nontrivial contraction to the

Petersen graph.

There are results indicating that some conditions for hamiltonian properties can be

improved under an additional assumption that the graph under consideration is hourglass-

free. For example, it is a well-known fact, observed independently by several authors

(see e.g. [3]), that the Matthews-Sumner conjecture (every 4-connected claw-free graph

is hamiltonian) is true in Γ0-free graphs (and even for only 4-edge-connected graphs

[21]); moreover, it was shown recently [11] that every 4-connected {K1,3,Γ0}-free graph

is 1-Hamilton-connected, and 1-Hamilton-connectedness is polynomial in the class of

{K1,3,Γ0}-free graphs.

In the present paper, we continue in this direction by showing that Theorems B, C,

D and E can be substantially strengthened under an additional assumption that G is

Γ0-free.

4



2 Results.

In this section, we present our results. Their proofs are postponed to Section 3, and their

sharpness will be discussed in Section 4.

Our first result strengthens Theorem B in the case of Γ0-free graphs.

Theorem 1. Let G be a 3-connected {K1,3,Γ0}-free graph. If G is

(i) P20-free, or

(ii) Z18-free, or

(iii) N2i,2j,2k-free with i+ j + k ≤ 9,

then G is hamiltonian.

The situation with Hamilton-connectedness is more complicated since the closure op-

eration is not applicable in this case (there are 3-connected claw-free graphs which are

not Hamilton-connected while their closure is). We have to use another closure concept

instead, and this allows to obtain the following strengthening of Theorem C.

Theorem 2. Let G be a 3-connected {K1,3,Γ0, P12}-free graph. Then G is Hamilton-

connected.

Our next result shows that the minimum degree bound on circumference given in

Theorem D can be also substantially strengthened in the case of Γ0-free graphs.

Theorem 3. Let G be a 3-connected {K1,3,Γ0}-free graph of order n. Then either

c(G) ≥ min{σ12(G), n},

or L−1(cl(G)) has a nontrivial contraction to the Petersen graph.

Theorem 3 immediately implies the following corollary.

Corollary 4. Let G be a 3-connected {K1,3,Γ0}-free graph of order n. Then either

c(G) ≥ min{12 δ(G), n},

or L−1(cl(G)) has a nontrivial contraction to the Petersen graph.

The proof technique of Theorem 3 also gives the following corollary, giving a weaker

bound, but without any exception class.

Corollary 5. Let G be a 3-connected {K1,3,Γ0}-free graph of order n. Then

c(G) ≥ min{σ9(G), n}.
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Finally, as another consequence of the proof technique of Theorem 3, we have the

following strengthening of Theorem E.

Theorem 6. Let G be a 3-connected {K1,3,Γ0}-free graph of order n such that

σ13(G) ≥ n+ 1.

Then either G is hamiltonian, or L−1(cl(G)) has a nontrivial contraction to the Petersen

graph.

Theorem 6 has the following immediate consequence.

Corollary 7. Let G be a 3-connected {K1,3,Γ0}-free graph of order n such that

δ(G) ≥ n+ 1

13
.

Then either G is hamiltonian, or L−1(cl(G)) has a nontrivial contraction to the Petersen

graph.

The proof technique also allows to obtain the following consequence of Theorem 6,

having stronger assumptions, but no exception class.

Corollary 8. Let G be a 3-connected {K1,3,Γ0}-free graph of order n such that

σ10(G) ≥ n+ 1.

Then G is hamiltonian.

3 Proofs.

Before proving the results, we first summarize some known facts and give some auxiliary

results that will be needed for our proofs.

3.1 Some auxiliary results and facts.

We say that a set R ⊂ E(G) is an essential edge-cut of a connected graph G, if G − R
has at least two nontrivial (i.e., containing at least one edge) components. For k ≥ 1,

a graph G is essentially k-edge-connected if G has no essential edge-cut of size less than

k. It is a well-known fact that if G = L(H), then G is k-connected if and only if H

is essentially k-edge-connected. We also recall that if G = L(H), then a graph F is an

induced subgraph of G if and only if L−1(F ) is a subgraph (not necessarily induced) of H.

For i, j, k ≥ 1, Si,j,k will be the graph obtained from K1,3 by subdividing its edges with

i − 1, j − 1 and k − 1 vertices of degree 2, respectively (thus, S1,1,1 = K1,3). It is easy
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Figure 2: The graphs L−1(Γ0) and Si,j,k

to observe that L−1(Ni,j,k) = Si+1,j+1,k+1, L
−1(Bi,j) = S1,i+1,j+1, and L−1(Zi) = S1,1,i+1.

Note that also L−1(Pi) = Pi+1, and that L−1(Γ0) is the unique graph with degree sequence

3, 3, 1, 1, 1, 1 (see Fig. 2 ).

The following fact was proved in [4].

Theorem F [4]. Let G be a {K1,3, F}-free graph, where F ∈ {Pi, Ni,j,k} for some

i, j, k ≥ 1, and let x ∈ VEL(G). Then G∗x is {K1,3, F}-free.

Note that an analogue of Theorem F is not true in the case of {K1,3, Zi}-free and

{K1,3,Γ0}-free graphs. However, it is still possible to prove the following weaker statement.

Theorem G [4, 5]. Let G be a {K1,3, F}-free graph, where F ∈ {Pi, Zi, Ni,j,k,Γ0}, for

some i, j, k ≥ 1. Then cl(G) is {K1,3, F}-free.

Recall that, as already noted, an analogue of Theorem G is not true in the case of

{K1,3, Bi,j}-free graphs, and this is why there is no corresponding result on {K1,3, Bi,j}-
free graphs so far.

A closed trail T (i.e., an eulerian subgraph) in a graph H is said to be a dominating

closed trail (abbreviated DCT) in H if every edge of H has at least one vertex on T

(note that we admit a DCT to be trivial). The following classical result by Harary and

Nash-Williams shows that a DCT in a graph H is an analogue of a hamiltonian cycle in

L(H).

Theorem H [9]. Let H be a graph with at least 3 edges. Then L(H) is hamiltonian

if and only if H has a DCT.

Let E0, X ⊂ E(G), and let G1 = G|X . We say that G has G1 as an E0-nontrivial

contraction if, for every vertex v ∈ V (G1), con−1(v) either contains at least one edge

e ∈ E0, or con−1(v) is incident with an edge u′v′ ∈ E0 such that u′ ∈ V (con−1(v)) and

v′ /∈ V (con−1(v)) with dG(v′) = 2.

Theorem I [6]. Let G be a 3-connected claw-free graph and let H = L−1(cl(G)). Let

S ⊂ V (G) be a vertex subset in G with |S| ≤ 12, and let XS = L−1(S). Then either

G contains a cycle C with S ⊂ V (C), or H has the Petersen graph as an XS-nontrivial

contraction.
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As noted in [6], Theorem I immediately implies the following result which is originally

by Győri and Plummer [8].

Theorem J [8]. Let G be a 3-connected claw-free graph and let S ⊂ V (G) with

|S| ≤ 9. Then G contains a cycle C with S ⊂ V (C).

We will also need the following fact describing the structure of preimages of closed

{K1,3,Γ0}-free graphs.

Proposition 9. Let G be a 3-connected closed {K1,3,Γ0}-free graph and let H =

L−1(G). Then H is an essentially 3-edge-connected bipartite graph with bipartition H =

(X, Y ) such that X = V≥3(H) and Y = V≤2(H).

Proof. Obviously, H is essentially 3-edge-connected. Let e = uv ∈ E(H). If u, v ∈
V≥3(H), then, since H is triangle-free, for some u1, u2 ∈ NH(u) \ {v} and v1, v2 ∈ NH(v) \
{u}, the edges uu1, uu2, uv, vv1, vv2 determine in H a subgraph isomorphic to L−1(G), a

contradiction. If u, v ∈ V≤2(H), then uv is separated from H \ {u, v} by an edge-cut of

size at most 2, a contradiction again. Hence every edge of H has one vertex in V≥3(H)

and one vertex in V≤2(H), and the result follows.

The following simple fact will be also useful.

Lemma 10. Let G be a 3-connected closed {K1,3,Γ0}-free graph, and let T be a DCT

in H = L−1(G). Then V≥3(H) ⊂ V (T ).

Proof. If some x ∈ V≥3(H) is not on T , then its neighbors are also not on T since

NH(x) ⊂ V≤2(H) by Proposition 9. Thus, the edges containing x have no vertex on T , a

contradiction.

Let G be a 3-connected closed {K1,3,Γ0}-free graph, and let H = L−1(G). We will use

Hsup to denote the (multi)graph obtained from H by suppressing all vertices of degree 2

(i.e., for any x ∈ V2(H) with NH(x) = {x1, x2}, by replacing the path x1xx2 with the edge

x1x2), and H+
sup the (multi)graph obtained from Hsup by adding a pendant edge to every

its vertex. (Note that if some vertices x1, x2 ∈ V≥3(H) have more common neighbors of

degree 2, then we keep in Hsup the corresponding multiedge with endvertices x1, x2.)

Lemma 11. Let G be a 3-connected closed {K1,3,Γ0}-free graph, and let H = L−1(G).

Then H has a DCT if and only if H+
sup has a DCT.

Proof. If T is a DCT in H, then, by Lemma 10, T contains all vertices of H of degree

at least 3. Hence the corresponding closed trail in H+
sup (obtained from T in the obvious

way by suppressing all vertices in V (T ) ∩ V2(H)) is a DCT in H+
sup. Conversely, if T is a

DCT in H+
sup, then T is also a closed trail in Hsup and T contains all nonpendant vertices

of Hsup. Hence the corresponding closed trail in H (obtained by subdividing every edge

in T ) is a DCT in H.
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3.2 Proof of Theorem 1.

Let G be a nonhamiltonian 3-connected {K1,3,Γ0}-free graph. For the proof of Theorem 1,

we need to show that G contains each of the graphs P20, Z18 and N2i,2j,2k with i+j+k = 9

as an induced subgraph.

By Theorems A and G, we can suppose that G is closed. Thus, let H = L−1(G). We

need to show that H contains as a subgraph (not necessarily induced) each of the graphs

L−1(P20) = P21, L
−1(Z18) = S1,1,19 and L−1(N2i,2j,2k) = S2i+1,2j+1,2k+1 for i+j+k = 9. By

Lemma 11, by Theorem H and by Theorem B (i), (iii) and (iv), the graph H+
sup contains as

a subgraph each of the graphs P12 = L−1(P11), S1,1,10 = L−1(Z9) (or is isomorphic to the

Petersen graph with added pendant edges), and Si+1,j+1,k+1 = L−1(Ni,j,k) for i+j+k = 9.

We consider these cases separately.

Let first P = x1x2 . . . x12 be a P12 in H+
sup. Then P ′ = x2 . . . x11 is a P10 in Hsup (note

that the edges x1x2 and x11x12 can possibly be pendant in H+
sup). For any i = 2, . . . , 10,

choose a vertex x+i ∈ NH(xi)∩NH(xi+1) (note that, by Proposition 9, x+i ∈ V2(H)). Then

P ′′ = x2x
+
2 x3x

+
3 . . . x

+
10x11 is a P19 in H. Moreover, by the construction, x2, x11 ∈ V≥3(H).

Choose x−2 ∈ NH(x2) \ {x+2 } and x+11 ∈ NH(x11) \ {x+10, x−2 }. Then x−2 , x
+
11 /∈ V (P ′′) and

P ′′′ = x−2 x2x
+
2 x3x

+
3 . . . x

+
10x11x

+
11 is a P21 in H.

Secondly, if H+
sup is the Petersen graph with one pendant edge added to each its vertex,

then H is the subdivision of the Petersen graph, i.e., the graph obtained by adding a vertex

of degree 2 to each of its edges (see Fig. 4(a)), and it is straightforward to verify that H

contains an S1,1,19.

Thus, we can suppose that there is an S ⊂ H+
sup with S ' S1,1,10. Set V (S) =

{c, b1, b2, a1, . . . , a10}, where c is the center, cb1 and cb2 are the two short branches, and P =

ca1 . . . a10 is the long branch of S. Then P is a P11 in H+
sup. Since clearly c ∈ V≥3(H+

sup),

hence also c ∈ V≥3(Hsup), but a10 can possibly be pendant in H+
sup, P ′ = ca1 . . . a9 is a

P10 in Hsup with c, a9 ∈ V≥3(Hsup). Then, similarly as in the first part, we have a path

P ′′ = cc+a1a
+
1 . . . a

+
8 a9 which is a P19 in H with c, a9 ∈ V≥3(H). Now observe that if

NH(c) \ {c+} = NH(a9) \ {a+8 }, then, by Proposition 9, {cc+, a9a+8 } is an essential edge-

cut of size 2 in H, contradicting the connectivity assumption. Thus, by symmetry, we can

suppose that there is a vertex b′ ∈ NH(c) \NH(a9). Then, choosing b′′ ∈ NH(c) \ {b′, c+}
and a+9 ∈ NH(a9) \ {a+8 , b′′}, and adding the edges cb′, cb′′ and a9a

+
9 to P ′′, we have an

S1,1,19 in H.

Finally, let S ⊂ H+
sup be an Si+1,j+1,k+1 in H+

sup for some i, j, k ≥ 1, i + j + k = 9.

Then, similarly as before, removing from S the endvertices of the three branches, we have

an Si,j,k in Hsup. Subdividing all its edges, we get an S2i,2j,2k in H such that endvertices

of all three branches are in V≥3(H). Adding to each of them an edge to a neighbor of

degree 2 (it is easy to see that it is always possible), we get an S2i+1,2j+1,2k+1 in H.
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3.3 Proof of Theorem 2.

We now turn our attention to the Theorem 2. Its proof will need some additional concepts

and notations. As these will be needed only for the proof of Theorem 2, we give them

here.

The situation is different here since there are 3-connected claw-free graphs G such that

cl(G) is Hamilton-connected while G is not (for an example, see e.g. [19]). To overcome

this difficulty, the concept of a strong multigraph closure of a claw-free graph G was

introduced in [12] as follows.

For a given claw-free graph G, we construct a graph GM by the following construc-

tion.

(i) If G is Hamilton-connected, we set GM = cl(G).

(ii) If G is not Hamilton-connected, we recursively perform the local completion oper-

ation at such eligible vertices for which the resulting graph is still not Hamilton-

connected, as long as this is possible. We obtain a sequence of graphs G1, . . . , Gk

such that

(1) G1 = G,

(2) Gi+1 = (Gi)
∗
xi

for some xi ∈ VEL(Gi), i = 1, . . . , k,

(3) Gk has no hamiltonian (a, b)-path for some a, b ∈ V (Gk),

(4) for any x ∈ VEL(Gk), (Gk)∗x is Hamilton-connected,

and we set GM = Gk.

A graph GM obtained by the above construction is called a strong multigraph closure (or

briefly an SM-closure) of the graph G, and a graph G equal to its SM-closure is said to be

SM-closed. If GM is an SM-closure of a claw-free graph G, then clearly GM is Hamilton-

connected if and only if so is G. Note that, for a given graph G, its SM-closure is not

necessarily uniquely determined, however, any SM-closure of a claw-free graph G is a line

graph of a multigraph.

As already mentioned, for simple graphs, it is well-known that if G is a line graph (of

some graph), then the graph H such that G = L(H) is uniquely determined (with one

exception of the graphs C3 and K1,3, for which both L(C3) and L(K1,3) are isomorphic to

C3). However, this is not true for multigraphs, as it is easy to construct infinitely many

examples of nonisomorphic multigraphs with isomorphic line graphs. This drawback can

be overcome by imposing an additional requirement that if G = L(H), then simplicial

vertices in G correspond to pendant edges in H. It can be shown [19] that for any line

graph G there is a uniquely determined multigraph H such that G = L(H) and simplicial

vertices inG correspond to pendant edges inH. This graphH will be called the multigraph

preimage of G and denoted H = L−1M (G). Note that for a given line graph G, L−1(G) and

L−1M (G) can be different (for an example, see Fig. 3).

It is an easy observation that in the special case when G is a line graph and H =

L−1M (G), a nonsimplicial vertex x ∈ V (G) is locally connected if and only if the edge

e = L−1M (x) is in a triangle or in a multiedge in H.
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Figure 3: A line graph G and its two preimages

Given a trail T and an edge e in a multigraph G, we say that e is dominated (internally

dominated) by T if e is incident to a vertex (to an interior vertex) of T , respectively. A

trail T in G is called an internally dominating trail, shortly IDT, if T internally dominates

all the edges in G. The following result is an analogue of Theorem H for Hamilton-

connectedness.

Theorem K [14]. Let H be a multigraph with |E(H)| ≥ 3. Then G = L(H) is

Hamilton-connected if and only if, for any pair of edges e1, e2 ∈ E(H), H has an internally

dominating (e1, e2)-trail.

It can be shown (see [12]) that if G is SM-closed and if H = L−1M (G), then H contains

no multiple edge of multiplicity more than 2, no multitriangle (a triangle with a multiple

edge) and no diamond (a pair of triangles with a common edge). The following two

theorems summarize further basic properties of the SM-closure operation which will be

of importance for our proof.

Theorem L [12]. Let G be a claw-free graph and let GM be its SM-closure. Then

(a) G is Hamilton-connected if and only if GM is Hamilton-connected;

(b) GM is a line graph of a multigraph, and H = L−1M (GM) satisfies one of the following

conditions:

(i) H is a triangle-free simple graph;

(ii) There are e, f ∈ E(H) such that there is no (e, f)-IDT and either

(α) H is triangle-free and {e, f} is the only multiedge in H, or

(β) H is a simple graph containing at most 2 triangles, each triangle in

H contains at least one of e, f , and if H contains 2 triangles, then

the triangles have no common edge.

Theorem M [20]. Let G be an SM-closed graph and let H = L−1M (G). Then H does

not contain a triangle with a vertex of degree 2.

The following lemma is implicit in the proof of Lemma 3 of [11], however, for the sake

of completeness, we include it here with its (easy) proof.

Lemma 12. Let G be a claw-free graph such that every induced hourglass in G is

centered at an eligible vertex, and let x ∈ VEL(G). Then every induced hourglass in G∗x
is centered at an eligible vertex.

11



Proof. Let F
IND

⊂ G∗x, F ' Γ0, be an induced hourglass centered at a vertex u0 ∈ V (G∗x),

and suppose that u0 is locally disconnected in G∗x. Denote V (F ) = {u0, u1, u2, u3, u4} such

that E(F ) = {u0u1, u0u2, u0u3, u0u4, u1u2, u3u4}. Since clearly u0 is locally disconnected

also in G, E(F ) 6⊂ E(G). If G contains all the edges of F containing u0, then u0 centers a

claw in G; hence we can choose the notation such that u0u1 /∈ E(G). Then u0, u1 ∈ NG(x).

Let v1 be the first vertex on a shortest (u0, u1)-path in 〈NG(x)〉G. Clearly xu3, xu4 /∈ E(G)

for otherwise F is not induced in G∗x, and v1u3, v1u4 /∈ E(G) for otherwise u0 is not locally

disconnected in G∗x. But then 〈{u0, x, v1, u3, u4}〉G is an induced hourglass in G, centered

at the vertex u0, which is locally disconnected in G, a contradiction.

Proof of Theorem 2. The proof basically follows the strategy of proof of Theorem 1,

but instead of the closure cl(G), we use the SM-closure GM .

Let G be a 3-connected {K1,3,Γ0}-free graph, and suppose that G is not Hamilton-

connected. We need to show that G contains an induced P12. By Theorems L (a) and F

and by Lemma 12, we can suppose that G is SM-closed and every induced hourglass in G

is centered at an eligible vertex. Let H = L−1M (G). For the proof, we need to show that

H contains a (not necessarily induced) L−1M (P12) = P13.

By Theorem L (b), H can contain either at most 2 triangles (and these are edge-

disjoint), or one double edge. Let TH be the subgraph of H the components of which are

the triangles or the double edge (TH can have at most 2 components, and can be empty).

Note that a vertex v ∈ V (G) is eligible in G if and only if L−1M (v) ∈ E(TH).

Claim 1. V (TH) ⊂ V≥3(H).

Proof. The claim follows easily by the connectivity assumption, by Theorem M, and by

the definition of L−1M (G). �

By Claim 1, we specifically have V (TH) ⊂ V (Hsup).

Claim 2. Let e = uv ∈ E(H)\E(TH). Then |{u, v}∩V≥3(H)| = |{u, v}∩V≤2(H)| = 1.

Proof. By the connectivity assumption, no two vertices in V≤2(H) can be adjacent, hence

e has at most one vertex in V≤2(H). By Lemma 12 and by the fact that L−1M (x) ∈ E(TH)

for x ∈ VEL(G), e cannot be a central edge of an L−1(Γ0) (note that it is easy to see that

L−1(Γ0) ' L−1M (Γ0)). Hence e has at most one vertex in V≥3(H). Thus, e has one vertex

in V≥3(H) and one vertex in V≤2(H). �

Claim 3. The graph L(H+
sup) is not Hamilton-connected.

Proof. Choose e, f ∈ E(H) such that there is no (e, f)-IDT in H, and let e′, f ′ be

the corresponding edges of H+
sup. Let, to the contrary, T ′ be an (e′, f ′)-IDT in H+

sup.

By the definition of H+
sup, T ′ contains all vertices in V≥3(Hsup) as internal vertices. By

12



Claims 1 and 2, the corresponding trail T in H (obtained by subdividing each edge in

E(T )∩ (E(H) \E(TH)) with a vertex of degree 2), is an (e, f)-IDT in H, a contradiction.

�

Now, by Claim 3 and by Theorem C, there is a path P ⊂ H+
sup such that P '

L−1M (P9) = P10. Removing the endvertices of P (which can be pendant in H+
sup), we have

a path P ′ ⊂ Hsup, P ′ ' P8. Set ` = |E(P ′) ∩ E(TH)|. Then clearly 0 ≤ ` ≤ 4. Since

|E(P ′)| = 7, 7−` edges of P ′ are in E(Hsup)\E(TH), and, subdividing each of these edges

with a vertex of degree 2, we get a path P ′′ in H with |V (P ′′)| = |V (P ′)|+ 7− ` = 15− `
with endvertices in V≥3(H).

If ` = 4, then TH consists of 2 triangles and V (TH) ⊂ V (P ′′), implying that both

endvertices of P ′′ are in V (H) \ V (TH). Adding to each of them an edge to a neighbor of

degree 2, we have in H a path P ′′′ with |V (P ′′′)| = 15− `+ 2 = 13.

If ` = 3, then TH also consists of 2 triangles, and |V (TH) \ V (P )| ≤ 1. Thus, one

endvertex of P ′′ is in V (H) \ V (TH), and adding to it an edge to a neighbor of degree 2,

we have in H a path P ′′′ with |V (P ′′′)| = 15− `+ 1 = 13.

Finally, if ` ≤ 2, then already |V (P ′′)| = 15− ` ≥ 13.

3.4 Proofs of Theorems 3 and 6 and of Corollaries 5 and 8.

We again begin with some definitions and lemmas. A clique covering of a graph G is a

collection of cliques K = {K1 . . . , Ks} such that V (K1) ∪ . . . ∪ V (Ks) = V (G). A clique

covering is minimum if the number s = |K| of cliques to cover V (G) is smallest possible.

It is a well-known fact that if G = L(H), then a clique in G corresponds to a star or to a

triangle in H. Thus, if G is closed claw-free and H = L−1(G), then H is triangle-free, and

hence a minimum clique covering of G corresponds to a minimum covering of the edges

of H with stars.

Lemma 13. Let G be a 3-connected closed {K1,3,Γ0}-free graph and let K be a

minimum clique covering of G, K = {K1, . . . , Ks}. Then

(i) all cliques in K have at least three vertices and are pairwise vertex-disjoint,

(ii) there is an independent set I = {z1, . . . , zs} in G such that zi ∈ V (Ki), i = 1, . . . , s.

Proof. (i) By Proposition 9, H is bipartite with bipartition (X, Y ) such that X =

V≥3(G) and Y = V≤2(G). Then it is straightforward to see that K corresponds to the

covering of E(H) with the system of stars that are centered at the vertices of X. Since

X = V≥3(G), each of the cliques has at least three vertices, and since X is independent,

the cliques are vertex-disjoint.

(ii) By Proposition 9 and by Hall’s theorem, H has a matching which covers all vertices

of X. The corresponding vertices of G = L(H) form the requested independent set.
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Lemma 14. Let G be a 3-connected closed {K1,3,Γ0}-free graph, K = {K1, . . . , Ks}
a minimum clique covering of G, and I = {z1, . . . , zs} ⊂ V (G) an independent set such

that zi ∈ V (Ki), i = 1, . . . , s. Let 1 ≤ t ≤ s, and let C be a cycle in G such that

{z1, . . . , zt} ⊂ V (C). Then there is a cycle C in G such that V (K1)∪ . . .∪V (Kt) ⊂ V (C)

and |V (C)| ≥
∑t

i=1 dG(zi).

Proof. Let C be a cycle containing the vertices z1, . . . , zt. We first observe that C

contains at least one edge from each Ki, i = 1, . . . , t: indeed, if zi is simplicial, then

the two edges of C containing zi are both in Ki, and if zi is nonsimplicial, then zi has

at most one neighbor in V (G) \ V (C), implying that at least one of the two edges of C

containing zi must be in Ki. Thus, C contains at least one edge of each of the cliques

K1, . . . , Kt, and it is straightforward to see that C can be extended to a cycle C such that

V (K1) ∪ . . . ∪ V (Kt) ⊂ V (C).

Now, if zi is simplicial, then zi has all neighbors in Ki, hence |V (Ki)| = dG(zi)+1, and

if zi is nonsimplicial, then |V (Ki)| = dG(zi) since zi has exactly one neighbor outside Ki.

Choose the notation such that z1, . . . , z` are simplicial and z`+1, . . . , zt are nonsimplicial,

0 ≤ ` ≤ t. Then we have |V (C)| ≥
∑t

i=1 |V (Ki)| =
∑`

i=1(dG(zi) + 1) +
∑t

i=`+1 dG(zi) =∑t
i=1 dG(zi) + ` ≥

∑t
i=1 dG(zi).

Proof of Theorem 3. Let G be a 3-connected {K1,3,Γ0}-free graph of order n. By

Theorems A and G, we can suppose that G is closed. Set H = L−1(G) and suppose that

H does not have a nontrivial contraction to the Petersen graph.

Let K = {K1 . . . , Ks} be a minimum clique covering of G and, by Lemma 13, let

I = {z1, . . . , zs} be an independent set in G with zi ∈ V (Ki), i = 1, . . . , s. For an integer

t, 1 ≤ t ≤ s, set Kt = {K1 . . . , Kt} ⊂ K and It = {z1, . . . , zt} ⊂ I. Set XIt=L
−1(It), and

observe that, by our assumption, H cannot have the Petersen graph as an XIt-nontrivial

contraction for any t, 1 ≤ t ≤ s.

Now, if s ≤ 12, then, by Theorem I, G contains a cycle C with I ⊂ V (C), which, by

Lemma 14, can be extended to a cycle C with V (C) ⊃ V (K1) ∪ . . . ∪ V (Ks) = V (G),

i.e., to a hamiltonian cycle in G, implying c(G) = n. If s > 12, then similarly, for

t = 12, G contains a cycle C with I12 ⊂ V (C), which can be extended to a cycle C with

|V (C)| ≥
∑12

i=1 dG(zi). Since I is independent, we have
∑12

i=1 dG(zi) ≥ σ12(G). Thus, we

conclude that c(G) ≥ min{σ12(G), n}.

Proof of Corollary 5. Let G be a 3-connected {K1,3,Γ0}-free graph of order n, and

let H, K, I, Kt and It be as in the proof of Theorem 3.

If s ≤ 9, then, by Theorem J, we similarly have a cycle containing I, which, by

Lemma 14, can be extended to a hamiltonian cycle in G, implying c(G) = n. If s > 9,

then, for t = 9, we have a cycle C containing I9, which is extendable to a cycle C with

|V (C)| ≥
∑9

i=1 dG(zi) ≥ σ9(G). Thus, we conclude that c(G) ≥ min{σ9(G), n}.

Proof of Theorem 6. Let G, n, H, K, I, Kt and It be the same as in the proof of

Theorem 3, and, additionally, suppose that σ13(G) ≥ n + 1. By the previous arguments,
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it is sufficient to show that s = |K| ≤ 12, i.e., that G can be covered by at most 12

cliques. Let, to the contrary, s = |K| ≥ 13. Then V (K1)∪ . . .∪V (K13) ⊂ V (G), implying

that n ≥
∑13

i=1 |V (Ki)| =
∑`

i−1(dG(zi) + 1) +
∑13

i=`+1 dG(zi) ≥
∑13

i=1 dG(zi) ≥ σ13(G), a

contradiction.

Proof of Corollary 8 is analogous for |K| ≤ 9 and |K| > 9, respectively. Details are

left to the reader.

4 Concluding remarks.

Let H be the subdivision of the Petersen graph (see Fig. 4(a)), and let G = L(H). Then

clearly H is essentially 3-edge-connected and has no DCT, hence G is a 3-connected

{K1,3,Γ0}-free nonhamiltonian graph. Since H contains no P22, no S1,1,20 and no Si,j,k for

i + j + k ≥ 22, G is P21-free, Z19-free and Ni,j,k-free for i + j + k ≥ 19. This example

shows that parts (i), (ii) and (iii) of Theorem 1 are sharp.

Note that the sharpness example can be extended to an infinite family by adding

arbitrary number of pendant edges to vertices of degree 3 in H.
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Figure 4: Subdivisions of the Petersen graph (a) and of the Wagner graph (b)

We think that Theorem 2 is not sharp, and we believe that the following is true.

Conjecture 15. Let G be a 3-connected {K1,3,Γ0, P16}-free graph. Then G is

Hamilton-connected.

Let H be the subdivision of the Wagner graph (see Fig. 4(b)), let e, f ∈ E(H) be the

edges indicated in Fig. 4(b), and let G = L(H). Then it is easy to verify that H has no

(e, f)-IDT, hence G is not Hamilton-connected. However, it is easy to check that G is

3-connected and {K1,3,Γ0, P17}-free. This example shows that Conjecture 15, if true, is

sharp.

Note that this example can be also extended to an infinite family by adding pendant

edges to vertices of degree 3.
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Let again H be the subdivision of the Petersen graph, and let G = L(H). It is easy

to check that a closed trail in H that dominates maximum number of edges is any cycle

passing through any 9 of the total 10 vertices of degree 3, and it dominates 27 edges.

Thus, c(G) = 27 (while n = 30). Since also σ9(G) = 27, we have c(G) = σ9(G) < n,

which shows that Corollary 5 is sharp.

Similarly, σ10(G) = 30 = n and G is nonhamiltonian, which shows that also Corollary 8

is sharp.

Note that, in this case, adding pendant edges to vertices of degree 3 in H creates in

G a new independent set with smaller degree sum, namely, the set of simplicial vertices

that correspond to the added pendant edges. Thus, adding pendant edges does not create

an infinite family of sharpness examples, and we admit that Corollaries 5 and 8 could be

possibly improved under an additional assumption that G is sufficiently large.
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