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Abstract

We introduce a closure concept for hamiltonicity in the class of {K 4, K14 + €}-
free graphs, extending the closure for claw-free graphs introduced by the first au-
thor [JCTB 70(1997), 217-224]. The closure of a {K1 4, K14 + e}-free graph G with
minimum degree at least 6 is uniquely determined, is a line graph of a triangle-free
graph, and preserves hamiltonicity or non-hamiltonicity of G. As applications, we
show that many results on claw-free graphs can be directly extended to the class of
{Ki 4, K 4 + e}-free graphs.

1 Introduction

We consider finite simple undirected graphs G = (V(G), E(G)), and for concepts and
notations not defined here we refer to [2]. Specifically, we say that a graph G is nontrivial if
E(G) # 0; otherwise, G is trivial. If F, G are graphs, we write ' C G if F' is a subgraph (not
necessarily induced) of G, and F' ~ G if F, G are isomorphic. For z € V(G), Ng(z) denotes
the neighborhood of x, for F' C G, we set Np(z) = Ng(xz) NV (F), and for M C V(G),
we denote Np(M) = UzenNr(x). For x € V(G), dg(x) denotes the degree of x, for
e = zy € E(G), the integer wg(e) = dg(x) + de(y) is called the weight of the edge e, the
notation 0(G) stands for the minimum degree of G, and, for a positive integer k, we set
01(G) = min{dg(z1) + ... + dg(xk) | {z1,...,2x} C V(G) independent}.

A path in G with endvertices z, y will be called an (z,y)-path. For a cycle C' with a given
orientation and z,y € V(C), the (z,y)-subpath of C, traversed in the given orientation,
will be called a segment of C' and denoted xay, and y%m will denote the same segment,
traversed in the opposite orientation. A cycle (path) in G containing all vertices of G is
called a hamiltonian cycle (hamiltonian path) in G. A graph G is hamiltonian if G contains
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a hamiltonian cycle, Hamilton-connected if G contains a hamiltonian (z,y)-path for any
z,y € V(G), and 1-Hamilton-connected if G — x is Hamilton-connected for any = € V(G).

By a clique in G we mean a complete subgraph of G' (not necessarily maximal). For
M c V(G), (M)g denotes the induced subgraph on M in G. A vertex z € V(G) is
simplicial if (Ng(x))q is a clique, and locally connected if (Ng(z))e is a connected graph.
We say that a graph is locally connected if all its vertices are locally connected.

If C is a family of graphs, we say that a graph G is C-free, if G does not contain a graph
from C as an induced subgraph, and the graphs from C are in this context referred to as
forbidden subgraphs. In the special case when C = { K 3}, we simply say that G is claw-free.
Further graphs that will be used as forbidden subgraphs are shown in Fig. 1. Note that
whenever we list vertices of an induced subgraph, the vertices in the list are always ordered
such that their degrees form a nonincreasing sequence (thus, e.g. the center of an induced
K, 4 is always the first vertex of the list).

P2 Ps3 qa qs
D1 q1

Ds P4 q2 qs3
The claw K 3 K4 Kis+e

Figure 1: Forbidden subgraphs

If H is a graph, then the line graph of H is the graph G = L(H) with V(G) = E(H), in
which two vertices are adjacent if and only if the corresponding edges of H share a vertex.
If G is a line graph, different from the triangle K3, then the graph H such that G = L(H)
(which is known to be uniquely determined), will be denoted H = L™!(G). It is well-known
that a noncomplete line graph G is k-connected if and only if H = L™Y(Q) is essentially
k-edge-connected, i.e., H contains no edge-cut R with |R| < k such that G — R has at least
two nontrivial components. Also note that if e € E(H) and z. is the corresponding vertex
in G = L(H), then dg(z.) = wg(e) — 2, and if e is pendant (i.e., has a vertex of degree 1),
then z. is simplicial.

A closed trail T' (i.e., an eulerian subgraph) in a graph H is said to be a dominating closed
trail (abbreviated DCT) in H if every edge of H has at least one vertex on 7' (note that
we admit a DCT to be trivial). The following classical result by Harary and Nash-Williams
shows that a DCT in a graph H corresponds to a hamiltonian cycle in L(H).

Theorem A [10]. Let H be a graph with at least 3 edges. Then L(H) is hamiltonian if
and only if H has a DCT.

The following concepts were introduced in [18]. For z € V(G), the local completion of G
at x is the graph G/, obtained from G by adding all edges with both vertices in Ng(z) (thus,
x is simplicial in G’)). A locally connected nonsimplicial vertex is said to be eligible, and the
set of all eligible vertices in G is denoted Vg (G). The closure cl(G) of a claw-free graph
G is the graph obtained from G by recursively performing the local completion operation



at eligible vertices, as long as this is possible (more precisely, there is a sequence of graphs
G1,...,Gy such that Gy = G, Giy1 = (Gy)), for some x; € Vp(Gi), i = 1,...,t — 1,
Ver(Gy) = 0, and we set cl(G) = G). The following theorem from [18] summarizes basic

properties of the closure operation.

Theorem B [18]. Let G be a claw-free graph. Then
(1) cl(G) is uniquely determined,
(17) cl(G) is the line graph of a triangle-free graph,
(73i) cl(G) is hamiltonian if and only if G is hamiltonian.

In this paper, we extend the closure for claw-free graphs introduced in [18] to the larger
class of { K 4, K1 4+ e}-free graphs. It turns out that a direct extension is not possible, and
we have to work in a slightly larger class F, defined in Subsection 2.1. The closure operation
and its main properties are then given in Subsections 2.2 and 2.3, and in Subsection 2.4,
we give several applications of the closure to some famous conjectures, to a connectivity
bound for hamiltonicity, and to degree and neighborhood conditions for hamiltonicity in
{K1.4, K1 4 + e}-free graphs.

2 Results

2.1 Class F

We will use F to denote the class of all graphs G satisfying the following conditions (where
we use the notation of vertices as in Fig. 1):
(1) G is K 4-free,
(2) 9(G) = 6,
(3) if G is not (K5 4+ e)-free, then G contains a uniquely determined maximal clique K¢
such that, for every induced K4 + e in G, we have
(i) {a1, 92,3} C V(Kq),
(i1) [Nio({g0 @)\ far} > 1,
(#i1) |(Nko({a1,453) \ {ar}) U (Ne(ga) N Ne(gs) N Ne(an))| = 3.

The following lemma describes the structure of vertex neighborhoods in graphs from F.

Lemma 1. Let G € F and let x € V(G). Then (Ng(x))e has at most two components,
and, moreover, if (Ng(x))q has two components, then either they are both complete, or one
of them is noncomplete and the second one is trivial.

Proof. Clearly (Ng(z))¢ has at most three components for otherwise x is a center of an
induced K7 4. Suppose that (Ng(x))e has three components Fy, Fy, F3. If one of them, say,
Fy, is noncomplete, then, choosing nonadjacent vertices vi,v? € V(Fy), and v; € V(F}),
i = 2,3, we have ({z,v],v? vo,v3})¢ ~ Ki4, a contradiction. Hence all of F, Fy, Fy are
complete. Since §(G) > 6, one of them, say, Fi, is nontrivial. Choosing v; € V(F;),
i = 2,3, we have ({z,v],v},v9,03})¢ ~ K4 + € for any vj,v} € V(F}), implying that



(V(Fy) U{z})¢ = Kg. But then none of the subgraphs ({z,vi,v? vs,v3})¢ can satisfy
condition (3)(ii) from the definition of the class F, a contradiction. Hence (Ng(x))q has
at most two components.

Suppose that (Ng(x))e has two components F, Fy. If Fy, Fy are both noncomplete, then,
choosing two nonadjacent vertices in each of them, we again have an induced K 4. Hence
one of the components, say, Fy, is complete. If F} is noncomplete and F5 is nontrivial, then,
choosing two nonadjacent vertices vi,v? € V(F)), we again have ({z,v],v? vs,v3})g =~
K14+ e for any vy, v3 € V(Fy), implying (V(Fy) U{z})¢ = K¢, and none of the subgraphs
({z, v}, v}, vd,v3}) ¢ can satisfy condition (3)(ii) from the definition of F. Hence either both

Iy and Fy are complete, or, if I} is noncomplete, then Fj is trivial. [ |

Note that the class F contains all { K 4, K3 4 + e}-free graphs G with minimum degree
d(G) > 6, since it is straightforward to observe that every {Kj4, K4 + e}-free graph G
with §(G) > 6 clearly satisfies conditions (1), (2) and (3). This observation shows that the
class F is an extension of the class of { K} 4, K 4 + e}-free graphs with §(G) > 6.

2.2 Local completion

We say that a vertex = € V(G) is eligible if at least one component of (Ng(x))q is not
complete. Note that, by Lemma 1, if G € F and = € Vg.(G), then (Ng(z))e has exactly
one noncomplete component, plus possibly another trivial component. We will use Vg (G)
to denote the set of all eligible vertices in G.

For z € Vg (G), the local completion of G at x is the graph G, obtained from G by
adding to the noncomplete component of (Ng(z))¢ all missing edges (i.e., by replacing the
noncomplete component of (Ng(x))e with a clique). The edges in E(G%) \ E(G) will be
sometimes referred to as new edges.

Note that in the special case when G is claw-free, a vertex with a noncomplete component
must be locally connected, and hence the local completion operation in claw-free graphs, as
introduced in [18] and mentioned in the introduction, is a special case of the local completion
operation as introduced here.

We present here two statements describing basic properties of the local completion op-
eration which will be crucial for the main concept of this paper. The first of them shows
that the local completion of a graph from the class F remains in F.

Lemma 2. LetG € F, andlet x € Vg, (G)NV(Kg), orx € Vg (G) if G is (K 4+e)-free.
Then G}, € F.

Proof. 1. Suppose, to the contrary, that G’ contains an induced subgraph F' ~ K 4,
and denote its vertices as in Fig. 1. Since all new edges in G}, are in a clique, exactly one
edge of F, say, pipe, is new. Then ({p1, x, ps3, p1,p5})c =~ K14, a contradiction.

2. The condition §(G%) > 6 is straightforward since E(G) C E(G?).
3. Suppose that G is not (K4 + e)-free. By Lemma 1, let X be the noncomplete
component of (Ng(z))g (recall that x € Vg (G)). Then, again by Lemma 1, if G is not
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(K14 + e)-free, we have V(Kg) C V(X) U {z}. Set Kg: = (V(X) U {z})g:. We show
that

o K- satisfies conditions (3)(4), (i¢), (i73) from the definition of the class F,

e 1o other maximal clique in G satisfies (3)(7), (i7), (i77).

Let F' be a new induced K;4 + e in G} and denote its vertices as in Fig. 1. If the
edge ¢1q4 is new, then ¢z, qux € E(G), and then ({q1,¢2,q3,2,¢5})¢ ~ K14 + e. Hence
{q1,92,93} C V(K¢g), but then, since xqq,zq3 ¢ E(G), we have x ¢ V(Kg), contradicting
the assumption of Lemma 2. Hence ¢;q4 € E(G), and, symmetrically, ¢1¢5 € E(G). Thus,
the new edges in I are in the triangle ({¢1,¢2,93})c:. If gogs is the only new edge in F,
then again ({¢1, 2, ¢3, 1, ¢5})¢ =~ K14, a contradiction. Thus, up to symmetry, either ¢;¢.
is the only new edge, or at least two edges are new, one of them ¢;¢s.

Condition (3)(7). If q1qo is the only new edge, then for x # ¢3 we have xq3 € E(G)
(otherwise ({q1,2,q3,q,¢5})c =~ K14), hence {q1,¢2,q3} C Ng(x), implying {¢1, 2,93} C
V(Kg:), and if & = g3, then immediately {q1, g2, g3} C V(K¢ ), as requested. If at least two
edges are new, then again {q1,q2, 3} C Ng(z), implying {¢1, ¢2, g3} C V(K= ), as requested
in condition (3)(3).

Conditions (3)(74), (4i7). Recall that all new edges are in the triangle ({¢1, g2, ¢3})q:, and
@243 is not the only new edge. Up to symmetry, ¢1q2 is new. We distinguish two cases.

Case 1: the edge qi1q2 is new and q1q3 € E(G).

Then ¢1,q2 € Ng(x). If x # g3, then, considering Fo = ({q1,2,93,44,45})c, we have
zqs € E(Q), for otherwise Fg ~ K 4. Then F ~ K, 4+ ¢, implying {q1,z,¢3} € V(K¢).
Since Fg satisfies (3)(74), (4i1) in G and V(K¢g) C V(Kg:), F satisfies (3) (i), (¢44) in G7.
Thus, it remains to consider the case x = ¢3 (implying ¢2q3 € E(G)).

Since z € Vi (G), there is a (q1,¢2)-path @ = qiv1...v;q2 in (Ng(z))e. Consider
Fo={q,v1,¢,0,¢}) e Hvig, g ¢ E(G), then Fy ~ K 4+e, and we easily observe
that F' satisfies (3)(77), (4ii) since Fy satisfies (3)(i7), (#4¢) (in G) and V(Kg) C V(Kg:).
Thus, by symmetry, we suppose that viq, € E(G).

Claim 1.  Let n € Ng(q1) \ {43, q4, g5, v1}. If F' does not satisfy conditions (3)(it), (iii),
then |NG<n) N {QS>Q47Q5}| Z 2.

Proof. Set Fo = ({¢1,95.7, s, ¢5}) - Since Fg % Ky 4 and {¢s, q1, g5} is independent,
we have Ng(n)N{qgs, qs,q5} # 0. Suppose, to the contrary, that | Ng(n)N{qs, ¢, ¢} = 1.
If ngs € E(G), then Fg ~ K4 + e, implying {¢1,q3,n} C V(K¢), and since V(Kg) C
V(Kg:) and Fg satisfies (3)(44), (4ii), F' satisfies (3)(4i), (4ii) as well, a contradiction. If
nqs € E(G), then Fg ~ Ky4 + e, implying {¢1,n,q:.} C V(Kg), and since V(K¢g) C
V(Kg:) and o = g3 € V(K¢), we have g3qu € E(G}), a contradiction. Finally, if ngs €
E(G), then similarly F; ~ K 4+e, implying {¢1,n,¢5} C V(Kq), and then ¢3¢ € E(G?%),
a contradiction again. Hence |Ng(n) N {qs, g4, g5} > 2. O



Now, since 6(G) > 6, there are two distinct vertices ny,ns € Ng(q1) \ {¢3, @1, @5, v1}. If
niqs,neqs ¢ E(G), then, by Claim 1, we have {ni,n2} C Ng(q) N Ng(gs) and vy €
Nk (qs) (recall that x = g3, implying v; € V(Kg-)), and F satisfies (3)(ii), (4ii). Hence
suppwose that, say, nigs € E(G). If also nyqs € E(G), then {ni,ny,v1} C V(Kg:)
and, by Claim 1, {ni,ng,v1} C Nk,.({qs,¢5}), and if nyqs ¢ E(G), then, by Claim 1,
ny € No(q4) N Ne(gs) and {ny, v, } CZN]CG;;({QLL, ¢s}); in both cases, we have (3)(i7), (ii).

Case 2: both q1q; and q,q3 are new.

Then ¢1,q2,q93 € Ng(z). Up to symmetry, there is a (1, ¢2)-path @ = qv1...vj¢ in
(Ne(2))a. If ({q1.v1,%,qa,¢5}) ¢ =~ K14+ e, then we observe that F satisfies (3) (i), (i77)
in the same way as before. Thus, by symmetry, we suppose that v1q4 € E(G).

Similarly as in Case 1, we have the following claim.

Claim 2.  Letn € Ng(q1) \ {z, q4,¢5,v1}. If F' does not satisty conditions (3)(i1), (iii),
then |Ng(n) N{z,q, ¢} > 2.

Proof. Set Fg = {({q1,%,n,q4,¢5})c, and observe that Ng(n) N {x,q,q5} # 0 for
otherwise F¢ ~ Kj,4. Let, to the contrary, |Ng(n) N {z,q1,¢:}| = 1. If nx € E(G),
then Fg ~ Kj4 + e, implying {q1,z,n} C V(K¢g), and F satisfies (3)(ii), (ii7) since Fg
satisfies (3)(i7), (74i) and V(K¢g) C V(Keg:). If ngs € E(G), then Fg ~ K, 4+ e, implying
{q1,n,q4} C V(Kg), and then ¢3q4 € E(G%) since xqz € E(G); if ngs € E(G), then
similarly {q1,n,¢} C V(K¢g), implying g3¢5 € E(GZ%). In all cases, we have reached a
contradiction, hence |Ng(n) N{z, g4, q5}| > 2. O

Since §(G) > 6, there are two distinct vertices ny,ne € No(q1) \ {z, 1, g5, v1}. I ny,no ¢
Ng(z), then, by Claim 2, we have {ni,n} C Ng(qs) N Ng(gs) and vy € Ny, (qu); if
ny,ng € Ng(z), then {ni,ny, v1} C Ni.({qs,¢5}); and if nyz € E(G) but nyx é E(G),
then ny € Ng(qs) N Ng(gs) and {nl,vzl} C N ({@a;65}). In all cases, F' satisfies
(3)(id), (ii). '
It remains to show that g is the only maximal clique in G satisfying (3)(¢), (i), (éiz). By
Lemma 1, X is the only nontrivial component of (N (z))q, hence K¢: is the only nontrivial
maximal clique in G containing x. Thus, if K’ is another maximal clique in G, satisfying
(3)(i), (1), (i7i), then x ¢ V(K'). By (3)(7), {q1,¢2,q3} C V(K'), hence = ¢ {q1,q2,qs}. But
then ({q1,2,¢2,q4,¢})c: ~ K14 + e, and since K’ satisfies (3)(7), we have x € V(K'), a
contradiction.

We conclude that G, satisfies all three conditions from the definition of the class F,
hence G € F. |

Note that our intention in this paper is to develop a closure concept based on the local
completion operation, in the class of {Kj 4, K; 4 + e}-free graphs. However, the following
examples show that this is not possible, since in { K 4, K3 4 + e}-free graphs, an analogue of
Lemma 2 is not true. This is why we have to work in the class F which slightly extends the
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class of { K 4, K3 4 + e}-free graphs, and, although more complicated, it has the important
property that G € F implies G} € F.

Examples. 1. Let G be the graph in Fig. 2(a), where the circle represents a clique
of arbitrarily large order p > 3. It is easy to verify that G is {Kj4, K14 + e}-free and
x € Vgr(G). However, in G, we have ({q1,¢2, %, qa, @5 }) >~ K14 + €.

2. Let Gy, G be the graphs shown in Fig. 2(b), where again the circles in G5 represent
cliques of arbitrarily large order p; > 3, and let G be the graph obtained from G; and G,
by joining each of the double-circled vertices of G with all vertices of one of the cliques
K, , K,,, K,,, K,, of Go. Then again G is {K14, K 4+ e}-free, and it is easy to verify that,
for any = € VEL(é), é;‘: contains an induced K4 + e.

These examples show that in the class of {K 4, K14 + e}-free graphs, an analogue of
Lemma 2 is not true. Note that G satisfies condition (3) from the definition of F, and for
p > 7, we moreover have §(G%) > 6, hence G € F. Similarly, if p; > 6, i = 1,2, 3,4, then
G* e F for any z € Vg (G).

Figure 2: Two { K 4, K1 4 + e}-free graphs such that G is not {K 4, Ky 4 + e}-free
The following proposition shows that the local completion operation preserves hamil-

tonicity or nonhamiltonicity of a graph G € F.

Proposition 3. Let G € F, and let x € Vg, (G) NV (Kg), or x € Vg (G), if G is
(K1 4+ e)-free. Then G is hamiltonian if and only if G is hamiltonian.

Proof of Proposition 3 is postponed to Section 3.

2.3 Closure

Now we can introduce the main concept of this paper.

For a graph G € F, the h-closure of G, denoted cl"(G), is the graph obtained from G
by recursively performing the local completion operation at vertices x € Vg (G) NV (Kg),
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or z € Vgi(G) if G is (K4 + e)-free, as long as this is possible (more precisely, there is
a sequence of graphs Gi,...,Gy, such that (i) G1 = G, (it) Gip = (G;);, for some z; €
VerL(Gi)NV(Kg), or z; € Ve (G;) it G'is (Kyg+e)-free, i = 1,... k=1, (iit) Ve (Gy) = 0;
and we set cI"(G) = G}). If a graph G is equal to its h-closure, we say that G is h-closed.

The following statement summarizes basic properties of the h-closure operation.

Theorem 4. Let G € F. Then
(i) (@) is well-defined (i.e., uniquely determined),
(ii) cI"(Q) is the line graph of a triangle-free graph,
(i43) cl"(@G) is hamiltonian if and only if G is hamiltonian.

Proof. (i) Let G', G* be two h-closures of a graph G € F, suppose that E(G')\ E(G?) #
(), and let G4, ..., G, be the sequence of graphs that yields G'. Let j be the smallest integer
for which E(G;)\ E(G?) # 0, and let e = uwv € E(G;) \ E(G?). Then, since e € E(G;), the
vertices u,v are in the same component of (Ng,_,(7))q,_, for some vertex x € Vpr(Gj-1).
But then, since E((Ng,_,(%))¢,_,) C E(Gj—1) C E(G?), the vertices u,v are in the same
component of (Ngz(x))g2, hence e = uv € E(G?), a contradiction.

(i4) By the construction and by Lemma 1, the neighborhood in cl’(G) of every vertex
u € V(QG) is either a clique (if (Ng(u))¢ is connected), or a disjoint union of two cliques (if
(Ng(u))q is disconnected). It is straightforward to verify that such a graph is a line graph
of a triangle-free graph (for easy details see e.g. Lemma 1 in [18]).

(74i) This follows immediately from Proposition 3 by induction. |

Note that in the special case when G is claw-free, we have cI"(G) = cl(G).

2.4 Applications of the h-closure

In this section, we give several applications of the h-closure.
2.4.1 Thomassen’s, Matthews-Sumner’s and Bondy’s conjectures
Thomassen [20] posed the following conjecture.
Conjecture C [20]. Every 4-connected line graph is hamiltonian.

Matthews and Sumner [16] stated the following, seemingly stronger conjecture.
Conjecture D [16].  Every 4-connected claw-free graph is hamiltonian.

So far, both these conjectures are wide open. However, it is known [18] that Conjec-
tures C and D are equivalent. There are many further equivalent versions of these conjec-
tures; among others, we mention here the “Dominating Cycle Conjecture”, which appeared
independently at several places, and which states that every snark (a 3-regular cyclically
4-edge-connected non-3-edge-colorable graph of girth at least 5) has a dominating cycle



(for the equivalence, see [3]), or the statement that every 4-connected claw-free graph is
1-Hamilton-connected (see [19]). For more information on these equivalences, we refer the
reader to the survey paper [4].

As a weaker version of Conjectures C and D, Bondy [9] suggested the following conjec-
ture.

Conjecture E [9].  There is a constant ¢y with 0 < ¢y < 1 such that every cyclically
4-edge-connected cubic graph H of order n has a cycle of length at least con.

It was known (see e.g. [4]) that Conjectures C and D imply Conjecture E, and, re-
cently, Cada et al. [5] showed that Conjecture E implies the following weaker version of
Conjecture C.

Conjecture F. Every 4-connected line graph with minimum degree at least 5 is hamil-
tonian.

We state here the following conjecture.

Conjecture 5.  Every 4-connected { K1 4, K1 4 + e}-free graph with minimum degree at
least 6 is hamiltonian.

Comparing Conjecture 5 with Conjectures C — F, it seems that these should be indepen-
dent, as Conjecture 5 deals with a larger class of graphs, but under an additional stronger
assumption on the minimum degree. However, it turns out that Conjecture 5 is in fact
equivalent with Conjecture F.

Theorem 6. Conjecture 5 and Conjecture F are equivalent.

Proof. (¢) Suppose that Conjecture F is true, and let, to the contrary, G be a coun-
terexample to Conjecture 5. Then cl"(G) is a 4-connected nonhamiltonian line graph with
5(cl"(G)) > 6 > 5, hence cl"(G) is a counterexample to Conjecture F, a contradiction.

(7) Conversely, let G be a counterexample to Conjecture F, i.e., a 4-connected non-
hamiltonian line graph with §(G) > 5. Let H = L™'(G). Then H is an essentially 4-
edge-connected graph such that wgy(e) > 7 for any e € E(H), and H has no DCT. Since
wy(e) > 7, every edge of H contains a vertex of degree at least 4. Let H' be the graph
obtained from H by attaching three pendant edges to every vertex of degree at least 4.
Then clearly H' is essentially 4-edge-connected (since the pendant edges were attached only
to vertices of degree at least 4), has no DCT (since a DCT in H’ would also be a DCT in
H), and wy(e) > wy(e)+3 > 10 > 8 for every edge e € E(H), and wg(e) > 4+3+1 =38
for every pendant edge attached to H. Thus, the graph G’ = L(H') is a counterexample to
Conjecture 5. [ |



2.4.2 Hamiltonicity of graphs with high connectivity

The earliest positive results in the direction of Conjectures C and D, establishing a connec-
tivity bound implying hamiltonicity in line graphs, were by Jackson [11], and independently
by Zhan [21], who proved that every 7-connected line graph is hamiltonian [11], or Hamilton-
connected [21], respectively. There were several improvements, decreasing the connectivity
bound to 6, under some additional assumptions on vertices of degree 6 (for more details,
see [4]). A substantial improvement was given by Kaiser and Vréna [12], who, using a new
proof technique, showed the following.

Theorem G [12].  Every 5-connected claw-free graph with minimum degree at least 6
is Hamilton-connected.

Using a new closure technique [19] and reconsidering the proof, it was shown in [13] that
the assumptions of Theorem G in fact imply 1-Hamilton-connectedness, and this is so far
the strongest result in this direction. Here we extend Theorem G in another direction by
extending the class of claw-free graphs to { K 4, K14 + e}-free graphs.

Theorem 7. Every 5-connected {K 4, K14 + e}-free graph with minimum degree at
least 6 is hamiltonian.

Proof. If G is a counterexample to Theorem 7, then clh(G) is a counterexample to
Theorem G. [ |

2.4.3 Degree and neighborhood conditions for hamiltonicity

The first results, improving the classical Dirac’s and Ore’s degree conditions for hamil-
tonicity in the special case of claw-free graphs, were by Matthews and Sumner [17], who
showed that every 2-connected claw-free graph G with §(G) > "T_Z is hamiltonian, and by
Zhang [22], who extended this result by showing that every k-connected (k > 2) claw-free
graph G with 0,,1(G) > n— k is hamiltonian. Although both these results are sharp, there
were many subsequent results, weakening the assumptions and describing families of “ex-
ceptional graphs”. This process of consecutive improvements was concluded for 2-connected
claw-free graphs by Favaron et al. [8], who gave a general method which, for arbitrary pos-
itive integer k, gives a finite number of finite families Fi,...,F,,
each F; is generated by a single graph, and every “sufficiently large” claw-free graph G sat-
isfying 04(G) > n+k* —4k+7 (or, as a corollary, §(G) > W), is either hamiltonian,
or cl(G) € Uk, F;. The method was performed in [8] for £ = 6, and in [14], with the help
of a computer, for k£ = 8. Using a different approach, a similar result for minimum degree
in 3-connected graphs was recently given by Chen, Lai and Xiong [6].

It is not difficult to observe that all these results can be directly extended to the class of
{K1.4, Ky 4 + e}-free graphs with minimum degree at least 6 using the h-closure operation.
We formulate this fact in the form of the following “metatheorem”.

of line graphs such that
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Theorem 8. Let k an k be positive integers, and let fi(n) be a function and F a
family of line graphs such that every k-connected claw-free graph G of order n satisfying
0,(G) > fi(n) is either hamiltonian, or cl(G) € Fj,. Then every k-connected { K 4, K; 4+€}-
free graph G of order n satisfying 6(G) > 6 and o (G) > fr(n) is either hamiltonian, or
A"(G) € F.

Proof follows immediately from the fact that oy (cl*(G)) > 0% (G). |

There are similar sufficient conditions which, instead of §(G) or ox(G), deal with the
minimum of the neighborhood union |Ng(z;)U...UNg(xy)| taken over all independent sets
{z1,..., 21} CV(G) (see e.g. [1, 7, 15]). We conclude this subsection by observing that all
these results also admit a direct extension to the class of { K} 4, K 4 + e}-free graphs with
d(G) > 6 using the h-closure operation. We leave details to the reader.

3 Lemmas and proofs

3.1 Two lemmas on hamiltonian cycles in G,

Lemma9. LetG € F andz € Vg (G). If GE is hamiltonian, then there is a hamiltonian
cycle C" in G* such that C" uses at most two new edges.

Proof. Let C be a hamiltonian cycle in G containing minimum number of new edges,
and suppose, to the contrary, that C' contains besides x at least three new edges ujus, v1vs,
z1%3. Choose the nc(&ation such that C' = wjus CvyvaC 2120 Cx~zx™ Cuy. I eg. xtuy €
E(G), then C' = uy Cx*ugaxul is a hamiltonian cycle in G containing less new edges, a
contradiction. Hence ztuy ¢ E(G), and similar contradictions show that {zT, ua, va, 29} is
an independent set in G. But then ({z,z, ug, v, 22})¢ >~ K 4, a contradiction. [ |

Lemma 10. Let G € F and x € Vg (G). If G% is hamiltonian, then there is a hamilto-
nian cycle C' in G such that C" uses at most one new edge.

Proof.  As above, let C' be a hamiltonian cycle in G containing minimum number of
new edges, and suppose, to the contrary, that C' contains at least two new edges wujus,
v1v9. Choose the notation such that C' = wujug C' 0109 x‘xm*ﬁul. First observe that
x~xt ¢ E(Q), for otherwise, replacing in C' the subpath z~zx™ by the edge z~ 2" and the
(new) edge ujus by the subpath ujzus, we reduce the number of new edges in C'. Similarly
we have also ujus, v1vy, U101, UV, UsUy, Uz, Vex™ ¢ E(G) (note that, by Lemma 1, at least
one of the vertices 7,27, say, 7, is in the same component of (Ng:(2))¢: as the vertices
Uy, Uz, U1, V2, hence ({a™,u1,us,v1,v2})q: is a clique, and in each of the cases, we easily
obtain a hamiltonian cycle in G with at most one new edge).

Now we distinguish (up to symmetry) two cases according to how many of the segments
x*ﬁul, us C'vy, Ugafﬂ_ are nontrivial.
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Case 1: uy = vy and x~ = vy (i.e., one segment, say, x*Cuy, is nontrivial).

Since ({z,z",us,us,v2})¢ cannot be a Kj4, we have z7u; € E(G). Then we have
({x,x% ur, us, 12})g ~ Ky 4 + €, implying {z, 2%, u } C V(Kg).

The vertex x is eligible and hence (Ng(z))g contains a path joining the edge 27u; and
the vertices uy and vy. Up to symmetry, there is a (ug, up)-path or a (ug, ve)-path P in
(Ng(z))g. We choose the path P shortest possible.

Suppose first that P is of length at least 3. If P = ugp;...pruy, k > 2, then clearly
prug, p1v2 € E(G) (otherwise there is a shorter path), and then ({x,p1,us, us, v2})g =~
Ky 4 + e, implying {z,p1,us} C V(Kg), from which ujus € E(G), a contradiction. If
P = uspy ...prve, k > 2, then similarly ({z, p1, u2, u1, v2})¢ ~ K14 + e, implying ujus €
E(G), a contradiction again.

Hence P is of length 2. Up to symmetry, either P = uspiu; or P = uspivs.

Subcase 1.a: P = uspiu;.

We have pyuy ¢ E(C) since ujug, ugvy € E(C). If uyp; € E(C), then u; = pf, and
then C' = wyz™ C'prugveruy is a hamiltonian cycle in G using one new edge. Hence
also uypy ¢ E(C), i.e., py,p ¢ V(P). We consider the following possibilities.

Case Hamiltonian cycle in G}, containing exactly one new edge

ppf €EG) C= ulplungx*gp pfaul
piu € BE(G) C=u Cpluwzxx*ép Uy
pius € E(G) C= ulaz+8p1_uQv2xp1éu1
pius € E(G) C = 1L1!15+8]91$U2U2]9ir uy

In each of the cases we have reached a contradiction, hence py p;, py us, py Uz, pi us &
E(G). Then pfu; € E(G), for otherwise ({p1,p],u1,us,p; })e =~ Ki4. But then
<{P1>PT7U1,U2,I91_}>G ~ K14+ e, implying {plapLul} C V(Kg). Since {1’,$+,U1} -
V(Kg), we have pfz™ € E(G), but then C = u; Cp{ 2™ C piusvezu, is a hamiltonian
cycle in G using one new edge, a contradiction.

Subcase 1.b: P = uspvs.

Since ujus, Ugvs, vox € E(C), necessarily uspy, piva & E(C), ie., py,pi & V(P). If
ppi € E(G), then C = ujugpyvoxra™ Cpypf Cuy is a hamiltonian cycle in G using
one new edge; hence p; p; ¢ F(G). We further consider the following possibilities.
Case Contradiction: a hamiltonian cycle in G

(G) C’:ulx+8p1—u2$v2p18ul

(G) C =wuz™ Cpyvezusp Cuy
pluz € B(G) C= u1x+8p1v2xu2pf Uy

(G) C= ulzﬁaplwmvgpf Uy
Hence p; uz, py vz, py uz, pive ¢ E(G). But then ({p1,py,py,uz,v2})c =~ Ky, a con-
tradiction.

Case 2: = # uy and uy # vy (i.e., at least two segments are nontrivial).
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As in the previous case, zTu; € E(G) (for otherwise ({z,zT,ui,us,v2})ec ~ Ki4),
and, symmetrically, usv; € E(G). Then ({x,x% uj,us,m})eg ~ K14 + €), implying
{z,z", w1} C V(K¢), and, symmetrically, ({z,us,v1,u1,v2})e ~ K14 + €),
{z,us,v11} C V(K¢g). But then uyus € F(G), a contradiction.

implying

3.2 Proof of Proposition 3

Proof. Clearly, if G is hamiltonian, then G}, is hamiltonian as well. Let, conversely, G,
be hamiltonian, and suppose, to the contrary, that G is not hamiltonian. By Lemma 10, let
C’ be a hamiltonian cycle in G% with one new edge ejes, i.e., C' = - zxTC’'e1e5C"z~. Thus,
the vertices {x~, 2"} and {ej, ey} divide C” into three segments, namely, *C’e;, eoC'x™
and {x}, and at least one of the segments x*C"e;, eaC’z~ is nontrivial.

Case I: the cycle C' can be chosen such that both x*C’e; and e;C’'x~ are nontrivial.

Note that G contains no edge uv with u € {z*,e;} and v € {es, 2~} (otherwise there is a
hamiltonian cycle in G). Thus, necessarily z7e; € E(G) or eax™ € E(G) (or both), since
otherwise ({z, 2%, 27, e1,e2})g ~ Ky 4.

We denote the segments C, Cs, and their endvertices wy,wy and 2y, zo by the following
rules:

(i) if exactly one of the segments has adjacent endvertices (in G), we use C; to denote

this segment, and wy, wy to denote its endvertices (i.e., wiwy € E(G)),
(71) if both segments have adjacent endvertices, we use C and wy, wy for that of them,
for which, if possible, {wy, we} NV (Kg) # 0.
Then C5 denotes the second segment and 21, zo denote its endvertices.

In the sequel, we say that a (u,v)-path P is a (Cy, Cy)-path, if P is a path in (Ng(z))a
such that u € {wy,ws} and v € {z1, 25}. We further fix the notation of the endvertices of
C: and Cs by the following rule.

(23i) If P is a shortest (Cy, Cy)-path, then we choose the notation of the endvertices of Cy
and Cj such that P is a (ws, 2z2)-path (denoted P(ws, 22)).

Now, among all hamiltonian cycles in G with one new edge, we choose the cycle C' such
that the length of the (C4, Cy)-path P(ws, 22) is minimum.

We first show that P(ws, z2) = wav;...vj22 has length at most 3. If P(ws, 22) = wavy...vj22
with 7 > 3, then necessarily z120 € E(G) (otherwise ({x, 21, 22, V9, w1 })¢ =~ Kj 4), but then
both ({x,wy,ws, 22, v2}) ¢ and ({x, 21, 22, w1, v2}) ¢ induce a K 4+ e such that the triangles
are not in the same clique, a contradiction.

Subcase I.A: the path P(ws, z5) = wavvz22 has length 3.

Note that in this subcase we do not exclude the possibility that w; = ws, i.e. that C
is trivial (this remark, although redundant here, will be needed later on in the proof of
Case II).
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If 2120 ¢ E(G), then ({z,v1, w9, 21, 22})¢ =~ K14 + €, implying {z,v1,ws} € V(K¢), and
then the condition (3)(4i7) from the definition of the class F implies that some of zy, 2o
is connected with v; and ws by a path of length 2, contradicting the assumption of this
subcase. Hence 2125 € E(G).

Subcase I.A.1: vy € V().

—T : : " - -i-—> ~
We have vy vy ¢ E(G), since otherwise, for the cycle C” = w,Cvy vy Crwyz; Cozovexw,
in G, we have ) = w;Cvyvi Ciwy and Cy = 21C529v9, hence there is a shorter
(C1, Cy)-path, contradicting the minimality of the (Cj, Cs)-path in the choice of C’
(note that here, and in the following subcases, we have v; € V(C"), hence v; € V(C"),
and v is not listed since its position on C” is not specified).

We further consider the following possibilities (see Fig. 3(a)).
Case Contradiction: a hamiltonian cycle in G
vy 29 € B(G) C = wlavg@azlxvgc_)’lwgwl
vz € BE(G) C= wlc—>&U2$21@ZQU;?&w2w1
v,r € E(G) C= wlav;lec_gzwgglwgwl
vyz € E(G

Hence v, 22, vy 20,05 T,v5 x ¢ E(G), and the subgraph ({vs, z, 29,05 ,v5 })g is an in-

duced K4 + e, implying {vq, x, 20} C V(Kg). Thus 2z, € V(Kg), but since wy, wy ¢

N(z3), neither wy nor wsy is in K¢, which contradicts condition (¢) in the choice of C}.

poen —
C= w101U2220221IU;_01w2w1

~—

wy V1 Z2 wy V1 Z9 wy V1 Z2
Cy Cy, O Coy Cy Cy
+ +
Uy Uy
V2 V2
o= x T x o=
2 + 2
v
2
V2
wq 21 w1y 21 wq 21

Figure 3: Subcases [.A.1, I.A.2.b) and 1.A.2.¢).

Subcase I.A.2: vy € V(Cy).

Subcase I.A.2.a): vy = 21,v5 = 2.

%
Since 2123 € E(G), for the cycle C” = wiCrwyvazezizwy in G, we have Cy = 212909,
contradicting the minimality of the (C}, Cy)-path in the definition of C.

Subcase I.A.2.b): v, = 21,v) # 2 (or, symmetrically, vy # z1,v5 = 29).

Since 2123 € E(G), there is a shorter (C, Cy)-path for Cy = vgc_gzzzl (see Fig. 3(b)).
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Subcase I.A.2.c): vy # 21,05 # 2.

If vyuy € E(G) or vy zp € E(G), then there is a shorter (Cy,Cy)-path for Cy =
=32 2o , L

210905 vy Cozovs or Oy = 21050, 20CHvy, Tespectively; hence vy vy, v5 20 ¢ E(G) (see

Fig. 3(c)).

Subcase I.A.2.¢)(i): vy € V(C}).
We consider the following possibilities (see Fig. 4(a)).

Case Contradiction: a shorter (Cy, Cy)-path/a hamilt. cycle in G
v] = wy P = v10929 for C = wow1Chv; and Cy = 2;Ca29
v =W P = vjv929 for Cf = wywyChv; and Cy = 21Ch 29

viv) € E(G) P = vz for C) = wlavafawgvl and Cy = Zlc—>’222
viz € E(G) P = vv92y for Cy = vfawlwgavl and Cy = le_>'2zQ
viz € E(G) P =wwz for C) = vfc—qwgwlc_)’lvl and Cy = zlc_g,ZQ
vy wy € E(G) P = 192y for Cy = wlc_{vl’wzavl and Cy = 216_’;22
vyv; € BE(G) C= w1Clvagnglx@(C_’ngvlC_qwgwl

viv; € BE(G) C = wCloy vy Cozowzy Covev Crwsw,

G
G

+ — =t e b o= — = oy
Hence v]” # wo, vy # wy; vy 0], 0] T, 0] T, 0] we, vy vy ,v5 0] & E(G).

Wa ) Wa ) Wa 22
Cl CQ Cl CQ Cl C'2
vy U1 vy
Vs Vo V2
T vy x vy T vy
w1 21 w1 21 w1 21

Figure 4: Subcases [.A.2.¢)(7) and 1.A.2.¢)(ii).

We show that vy vy ¢ E(G). Let, to the C%Mrary,gfvg E_E}(G)_I}f vy 01 € E(G)
or §v1 € E(G), then the cycle C' = wCivy v9C520221Covy v1Clwsw; or C =
w,C1v] v9Co 21220 Covy v Clwew; is a hamiltonian cycle in G, respectively; hence
vy v, 0301 € E(G). Then ({vg,v1,v7,v5,v5 })¢ is an induced K4 + e, hence
ve,v1,v; € V(Kg), implying vy x € E(G), a contradiction. Thus, vy ve ¢ E(G).

Let us consider ({vy,wq, v, v, v2})q. If vl ¢ E(G), then vwy, € E(G) (oth-

erwise ({v1,w,v], vy, 12} =~ Ki4), but then ({vy,wa, v, v7,ve})e ~ K14+

e, implying {vy,ws,v{} C V(Kg), contradicting the fact that viz ¢ E(G).

Thus, we have vyv] € E(G). Symmetrically also vjv; € FE(G), and then C =
B = S . L . -

w1 Cv1v5 Cozox21Covavy Crwow; is a hamiltonian cycle in G, a contradiction.
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Subcase 1.A.2.c)(ii): v, € V(Cy).

First observe that if wyv; ¢ E(G), then ({x, 21, 20, w1, 01 })¢ =~ K14 + e, implying
{z,21,20} € V(K¢g), which contradicts the choice of C; (condition (ii) in the
definition of C’l) hence wyv; € E(G). Moreoxﬁr v1, V9 cannot be consecutive on
Cy: if v, = 1;2, then C' = wClwexz1CovezoCov1wy is a hamiltonian cycle in G
(see Fig. 4(b)), and if vy = v}, then, for C} = le_>’2111w201w1 and Cy = 22<C_’2v2,
P = wyvyvy is a shorter (Cy, Cy)-path (see Fig. 4(c)).
We now consider the following possibilities.
Case Contradiction: a shorter (C}, Cy)-path/a hamilt. cycle in G
v vl € B( 2% Ct Cs
vl wy € E(G) C= wlcle'U;&leZQ YU W
viw, € B(G) C = wlc’lwgvfogz’g:vzlc—gvlwl
vy 2 € E(G) C= wlClnglegvl_ZQavlwl

G) P = vz for C) = wiCiwyvy and Cy = ZlOQUl_Ui‘rOQZQ

We show that vyv;,vev] € E(G) (not excluding the possibility that v = v,
or vy = vy). Consider F = ({vy,v9,v],v],wet)g. If vovy,vvf ¢ E(G),
then ' ~ K, 4, hence v, is adjacent to at least one of vy, v{. If vv] €
E(G) but vy ¢ E(G), then F ~ K4 + e, implying {vy,v,v; } C V(Kg)
and zv; € E(G); but then C' = wlClngvf<C_’Q21ZQ<C—’gvlw1 is a hamiltonian cy-
cle in G, a contradiction. Similarly, if vevy € E(G) but vev; ¢ E(G), then
({v1,v2, 0], 07 ,wa})g = K14 + €, hence {v1,v2,v7 } C V(Kg) and zvf € E(G),
and then C = w,Ciwyzv; 6’22221C—>'21)1w1 is a hamiltonian cycle in GG, a contradic-
tion again. Thus, vov; , vov] € E( CQ see Fig. 5(a); note that our argument works
both if v; € z1Cvy and if v; € vV,C525, and does not exclude the possibility that
vi =, or vl =v;y).

%1

W z w z
2 20, o 2 2y Wa 29
vy 1 vy ¢ &
Ugi Uli
Uy Uy
+ +
Uq Uy €T
U1 U2
Uy )
wy 21 wy z1 wy 21

(a) (b) (¢)

Figure 5: Subcases 1.A.2.¢)(i7), I.A.2.c)(i7)(5) and L.B.

Subcase 1.A.2.¢)(ii)(a): vy € zlc_gvg.

We consider the following possibilities.

16



Case Contradiction: a shorter (Cy, Cy)-path/a hamilt. cycle in G
vivl € BE(G) P = vz for C) = w16_>’1w21)1, Cy = 21(7;1;;@2@@@;5;22
viv; € B(G) C = wlClngzlava;C_ngv;C—’Qvlwl

vy vy € E(G) P =192y for C7 = wCrwyuy, Cy = zlc’gva;avagazg
Hence vy v}, vivy vy vy ¢ E(G).
Suppose first that v;” = vy, and consider F; = ({vy, 29,05, vy, 0] })g (note
that vy # 2o by Subcase 1.A.2.0)). If viz ¢ E(G), then F; ~ Kj4; hence
vy 20 € E(G) and then Fy ~ K4 + e. This specifically implies 2, € V(Kg),
which contradicts condition (i7) in the definition of C;. Thus, vi # v, (see
Fig. 5(a)).
We consider Fy = ({vg, vy, 07,07, 05 }a. If vfvy ¢ E(G), then Fy ~ K4
hence v{ v, € E(G) and then F, ~ K1 4+e, which implies {vq, vy, v} C V(Kg)
and vy € E(G). Then C = wlClwgvlazlzgggvgvl Cyv, rw; is a hamiltonian
cycle in G.
Subcase 1.A.2.¢)(i1)(5): v, € UQC_>’222.

If vyu; € E(G), then, for C) = wlawgvl and Cy = zlc—gvg_vfavwfc—’;z%
t_h)ere is a shorter (C1, Cy)-path, if vy v € E(G), then C' = w1(7_1>w2xz1(7§v;v1+
Cy2905Cov w1, and if vy 29 € E(G), then C' = wlClwgvlavzfoQngf 221 W,
is a hamiltonian cycle in G. Hence v, vy, vy v], vy 20 & E(G) (see Fig. 5(b)).

We consider F' = ({vy, 29, 0], vf ,v5 N (note that vi” # 2, since otherwise there

is a shorter (Cy, Cy)-path). If v{ 2y ¢ F(G), then F ~ K, 4, hence vy 2, € E(G)

and F' ~ K14 + e, implying {vs, 20,07} C V(Kg) and vz € E(G), but then
%

C = wlC’lngvf 92129C5v1wq is a hamiltonian cycle in G.

Subcase 1.B: the path P(ws, z2) = wyvy 2y has length 2.
(See Fig. 5(c).)

Subcase 1.B.1: v; € V(C)).
We consider the following possibilities (see Fig. 6(a)).

Case Contradiction: a hamiltonian cycle in G
_ — =

v = W C= wlgClvlgnglxwl

’Ufr = W2 C = wlClvleC’Qzlmwgwl

vivy € E(G) C= wlavafc_qwgvlzg&_’gzlxwl
vz e E(G) C= wlCllele—ngvl CLwaw;
vz € E(G) C= w101v1 zQazlxvlClwzwl
vir e E(G) C= w16_>’11}122<6—'221m)1 C_>’1w2w1
vywe € BE(G) C= wlclvfwgavlzgazlxwl

Hence v; # wy, v # ws, and vy vi, vy 20, 07 20, v 2, 07 we ¢ E(G).
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We consider F' = ({v1,wa, 22,07, 05 Pg. If vfwy ¢ E(G), then F ~ Kj,4; hence
vy wy € E(G). Then F ~ K4 + e, implying {vy, v, ws} C V(Kg), contradicting the
fact that vz ¢ E(G).

w9 Z9 W2 z9 w9 Z9
Cy Cy i Cy Cy v1Cy
+ +
U] Uy U
(%1 U1
— T - T
U] Uy
w1 Z1 w1 1 w1 Z1

Figure 6: Subcases [.B.1, .B.2.a) and 1.B.2.b).

Subcase 1.B.2: v; € V(Cs).

We have 2120 ¢ E(G), since otherwise the situation is symmetric to that in Sub-
case I.B.1. Therefore, ({x,wy,wsq, 21, 22})c >~ K14 + e, implying {z, w;, ws} C V(Kg).
By condition (3)(i7) from the definition of the class F, v; can be chosen such that
v; € V(K¢g), implying wiv, € E(G).

Subcase 1.B.2.a): vy # z1,v] # 2.
We consider the following possibilities (see Fig. 6(b)).

Case Contradiction: a hamiltonian cycle in G
— & e
vivy € B(G) C= wlgwgvlzg_ggvl gcgzlxwl
’Ul Wy € E(G) C = w1C1w2U1+CQZQU10221$U)1
— —
vywy € E(G) C = w101w21)1_0221.%’22a1}1’w1
— T =
vy 29 € E(G
Hence vy v], v wy, vy we, vy 22 ¢ E(G).
We consider F' = ({vy, 20,0, 07 ,wa})g. If vf20 ¢ E(G), then F ~ Kj4; hence
vy 22 € E(G), and then F ~ K4 + e, implying {vy,22,v{ } C V(Kg). Since also
{z, w1, we} C V(Kg), we have wyzy € E(G), a contradiction.

Subcase 1.B.2.b): v = 2,

We consider F' = ({x,wy,ws, 21, 22})¢ ~ K14+ e (see Fig. 6(c)). By condition
(3)(i4i) from the definition of F, there are three internally vertex-disjoint paths Py,
P}, Pj of length 2 in (Ng(z))g such that each P; is a (ws, 29)-path, a (ws, z1)-path,
or a (z,22)-path. Since each of the paths P{, P;, Pj has its interior vertex in
V(Cy) \ {wy, w2} or in V(Cy) \ {21, 22}, one of them, denoted P’, has its interior
vertex p € Ng(x) \ {2, 25 }.

~—

C= wlClemC’ngfogzlxwl

Subcase 1.B.2.b)(i): P’ is a (wq, 22)-path.
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Then, relabeling P := P’ and v, := p, we are back in Subcase [.B.1 if p € V (),
or in Subcase 1.B.2.a) if p € V(Cy) (note that p € V(K¢g) by condition (3)(i7)).
Subcase 1.B.2.b)(it): P’ is a (wy, z1)-path.

Then, reversing the orientation of C'y and relabeling z; <> 29, we are in the previous
subcase.

Subcase 1.B.2.b)(iii): P’ is a (21, z2)-path.

Let first p € V(Cy). If p~p™ € E(G), then C = wlﬁﬁwgvl@p+p*<c—'gzlp22xw1,
and if p~2o € E(G), then C = w16_>'1w2@102p22p_<6_’221xw1 is a hamiltonian cy-
cle in G; hence p~p*,p 29 ¢ E(G). Symmetrically, p*z; ¢ E(G), and we also
know that z120 ¢ E(G) (see Fig. 7(a)). If pT25 ¢ E(G), then p~z; € E(G), for
otherwise ({p,p~, z1,p", 22})¢ =~ Ki4, but then ({p,p~,21,p%, 22} )¢ ~ K14 + e,
irnp_l)ying a € V(Kg), a contradiction. Hence ptz; € E(G), and then C' =

w1 Crwav CopT 29pChzixw; is a hamiltonian cycle in G, a contradiction.
Thus, p € V(Cy). We consider the following possibilities (see Fig. 7(b)).
Case Contradiction: a hamiltonian cycle in G
ppTeBE(G) C= w1ap7p+a>w2$22pzlc_gmw1
ptz € E(G) C= wlﬁpzzgzzlp*awﬁwl
Ptz € B(G)  C = wiCrpsChzptCrunzwy
Hence p~pt,ptz1,pt 2z ¢ E(G), and, symmetrically, also p~z1,p 22 ¢ E(G).
Since also z120 ¢ E(G), we have ({p,p~,p", 21, 22} )¢ ~ K14, a contradiction.

Subcase 1.B.2.c): v] = 21,v] # 2.

Then, reversing the orientation of C5 and relabeling z; <> 25, we are in Sub-
case 1.B.2.b) (see Fig. 7(c)).

Wa 22 W2 22 Wa 22

4 v1 Ch Ch Cy

Figure 7: Subcases 1.B.2.b)(iii) and 1.B.2.c).

Case II: for any choice of C', one of x7C'e;, eoC'x™ is trivial.

Choose the notation such that e, = 2~ and C' = x~zz"Cie;27, and, as in Case I, rename by
w1, wo the endvertices of C and set z; = . Take a shortest path P(ws, z1) = wovy ... vx21

19



in (Ng(x))a, and choose C such that P(ws, 21) is shortest possible. Of course, C” is a
hamiltonian cycle, hence vy, ..., v, € V(C}) \ {wy1,ws}. Also observe that if k& > 3, then
wiwy € E(G), for otherwise ({z,wy,wq,ve,21})e =~ Ki4. Then ({z,wy, ws,ve, 21} ) =
K, 4 + e, implying that, if £ > 3, then {z,w;,ws} C V(Kg).

Now, if k > 4, then ({z,vg, 21, wa, vp_2})¢ ~ K14 + e, implying z; € V(Kg), thus
wyz1 € E(G), a contradiction. Hence k < 3, i.e., P(ws, z1) is of length at most 4. Moreover,
if & = 2, then we obtain a contradiction by Subcase I.A. (recall that, in the proof, we
admitted w; = wy, which, by symmetry, gives the necessary proof for this case). Hence
k € {1,3}, i.e., P(wa, z) is of length 4 or 2.

Subcase I1.A: the path P(ws, z1) = wyvivovs2z; has length 4.

If v;x € E(G), then C = wlC_>'11)§xz1v36_>’1w2w1 is a hamiltonian cycle in G; hence vy x ¢
E(G), and symmetrically also vz ¢ E(G). This specifically also implies that v; , vy ¢
P(wsq, z1). If vyvg € E(G), then, setting C; = w,Clvzv5 Clwy and Cy = zv3, we are
back in Case I; hence vy vy ¢ E(G). If vy 2 € E(G), then C = wlclvgzlvgawﬂwl
is a hamiltonian cycle in G; hence v3 z; ¢ FE(G), and symmetrically also viz; ¢ E(G).
Then ({vs,z, 21,05 ,v3 })a =~ K14 + e (see Fig. 8(a)). Since {z,w;,wy} C V(Kg), we
have wyz; € E(G), a contradiction.

W9 U1 () w2 Wa
(& Cy Civ
+ —
vy Uy Yy
V3 Z1 U1 » <1 > 21
_ T -
v

U3 1

w1 w1 w1

Figure 8: Subcases I1.A, II.B.1 and I[.B.2.

Subcase I1.B: the path P(ws, z1) = wov12; has length 2.

Subcase I1.B.1: w; # vy, v] # w,.
We consider the following possibilities (see Fig. 8(b)).

Case Contradiction: a hamiltonian cycle in G
vivy € B(G) C= wlavaf?&wgvlzlxwl

vz € E(G) C= wlClvlevlawﬂwl

vz € E(G) O = w Cluz1v7 Crwsaw,

vywe € BE(G) C= wlavfwgClvlzlxwl

Hence vy vy, vy 21, vf 21, v] we & E(G).
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We consider F' = ({vy, v, wa, v, 21 g, If vfwy ¢ E(G), then F ~ Kj,4; hence
vy wy € E(G), and then F ~ K 4+ e, implying {vy, v, wy} C V(K¢g). Therefore also
viz € E(G). Then, for C; = w,Civ12; and Cy = wyCiv;, we are back in Case 1.
Subcase I1.B.2: v = w,.
If wywy € E(G), then C' = wlﬁvlzlxwgwl is a hamiltonian cycle in G; hence wjwy ¢
E(G) (see Fig. 8(c)). By the assumption that 6(G) > 6, there is a vertex n € Ng(z)
such that n & {w;,ws,v1, z;,w]}. Since Cs is trivial and C” is a hamiltonian cycle,
necessarily n € V(Cy). We consider the subgraph F' = ({z,n,w,ws, 21})g. Since
F % Ky 4 and {wy,ws, z1 } is independent, necessarily Ng(n) N {wy, ws, 21} # 0.
First suppose that |Ng(n) N {wy, we, z1}| > 2.

() If win,wan € E(G), we relabel C) := z;v,Ciwy, wy = 21, wy = wy, 21 := We

and vy :=n;
(B) if won, z1n € E(G), we set vy := n;
(7) if win, z1n € E(G), we set vy := n, wy <> we, and reverse the orientation of Cf;

and, in all three cases, we are back in Subcase II.B.1. Hence |Ng(n)N{wy, wo, z1}| = 1.

Subcase I1.B.2.a): win € E(G).

Then F = ({z,n,wi,ws, 21})¢ ~ Ki4 + e, implying {z,n,w} C V(Kg) (see
Fig. 9(a)). As in Subcase [.B.2.b), by condition (3)(ii7) from the definition of F,
there is a path P’ in (Ng(z))q of length 2 with interior vertex p € Ng(z) \ {w], w; }
such that P’ is a (wsq, z1)-path, a (wy, z1)-path, or a (wy, ws)-path.

Wa Wa
Civ 4
vy
21 21
T
n vy
U1
w1y wq

(a) (b)

Figure 9: Subcases 11.B.2.(a) and I1.B.3.

Subcase I1.B.2.a)(i): P’ is a (ws, z1)-path.
We relabel P := P’, v; := p, and we are in Subcase I11.B.1.
Subcase I1.B.2.a)(ii): P’ is a (wy, z1)-path.

We reverse the orientation of C'; and relabel w; <> ws, and we are in the previous
subcase.

Subcase I1.B.2.a)(iii): P’ is a (wy, wsy)-path.

%
We relabel C; := z10:Chwy, wy := 21, we := wy, 21 := Wy, P := P’ and vy := p,
and we are again in Subcase I1.B.1.
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Subcase I1.B.2.b): wyn € E(G).

Then similarly F' = ({x,n,ws, w1, 21})¢ ~ K14 + e, implying {z,n,ws} C V(Kg),
and, by condition (3)(ii7), there is a path P’ in (Ng(x))q of length 2 with interior
vertex p € Ng(x) \ {w], wy } which is a (ws, 21)-path, a (w1, 21)-path, or a (wy, ws)-
path.

Subcase I1.B.2.0)(i): P’ is a (ws, z1)-path.
We set P := P’, v; := p, and we are in Subcase 11.B.1.
Subcase I1.B.2.b)(ii): P’ is a (wy, z1)-path.

We reverse the orientation of C, relabel w; <> ws, and we are in the previous

subcase.

Subcase I1.B.2.b)(iii): P’ is a (wy, wy)-path.

We relabel C] = zlvlawl, wy = 21, W 1= Wy, 21 := Wy, P := P’ and vy := p,
and we are in Subcase 11.B.1.

Subcase I1.B.2.c): zin € E(G).

%
We relabel C) := wiCiv12; and wy <> 21, and we are in Subcase 11.B.2.5).

Subcase II.B.3: w = v;.

We reverse the orientation of C, relabel w; <> wy, and we are in Subcase 11.B.2 (see
Fig. 9(b)).

4 Concluding remarks

1. The graph G in Fig. 10(a) is nonhamiltonian and {K 4, K; 4 + e}-free; however, since
G is locally connected, cl” (G) is complete, thus hamiltonian. This example shows that
Proposition 3 and Theorem 4 cannot be true without the minimum degree assumption. An
infinite family of graphs with similar properties (nonhamiltonian { K 4, K 4 + e}-free with
hamiltonian h-closure) is shown in Fig. 10(b).

(a) (b)

Figure 10: Nonhamiltonian { K 4, K3 4 + e}-free graphs with hamiltonian h-closure

22



2. Let H be the graph in Fig. 11, let H" be obtained from H by attaching at least two
pendant edges to each of its black vertices, let G = L(H ™), and let G be the graph obtained
from G by removing the edge z.,z.,, where x., is the vertex of G = L(H") corresponding
to the edge e; of HT, i = 1,2,3,4. Since H* is triangle-free, G is a closed line graph.
Moreover, in G, the only claw centers are the vertices x.,, .,, and it is easy to see that G
is {14, K14 + e}-free. One component of (Ng(ze,))c is the path z.,z.,2., and, in G}_,
the edge x.,z., is added, hence cl"(G) = G.

It is straightforward to verify that none of the edges fi, f2, f3 can be contained in a
DCT in H*, hence any DCT in H must pass through the edges ey, €5, and the edges e3, e4
are dominated, but not passed. This means that H+ has a DCT, hence G = clh(G) is
hamiltonian, but every hamiltonian cycle in G’ must contain the edge z,,z.,. Consequently,
the graph G is nonhamiltonian. We have §(G) = 4 (and, moreover, G is 3-connected), hence
this example shows that Proposition 3 and Theorem 4 cannot be true even if the minimum
degree assumption is weakened to §(G) > 4.

Figure 11: A nonhamiltonian {K 4, K; 4 + e}-free graph with hamiltonian h-closure
3. We admit that our results could be true for §(G) > 5, but, since our proof heavily

relies on the condition §(G) > 6, the proof of such an improvement would require a new
idea, and we leave this as an open question.
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