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Abstract

For an integer ¢ > 1, Z; is the graph obtained by attaching an endvertex of a path of
length i to a vertex of a triangle. We prove that every 3-connected { K 3, Z7 }-free graph
is Hamilton-connected, with one exceptional graph. The result is sharp.
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1 Introduction

In this paper, we generally follow the most common graph-theoretical notation and terminol-
ogy, and for notations and concepts not defined here we refer to [5]. Specifically, by a graph we
always mean a simple finite undirected graph; whenever we admit multiple edges, we always
speak about a multigraph. We use dg(z) to denote the degree of a vertex z in G, and for
i > 1 weset V;(G) ={z € V(G)| dg(z) = i}. If z € V5(G) with Ng(x) = {y1,y2}, then the
operation of replacing the path y;zys with the edge y1y. is called suppressing the vertex x.
The inverse operation is called subdividing the edge y,y» with the vertex x. We write F' C H if
F'is a sub(multi)graph of H, G; ~ G if the (multi)graphs G, Gy are isomorphic, and (M )¢
to denote the induced sub(multi)graph on a set M C V(G). The line graph of a multigraph
H is the graph G = L(H) with V(G) = E(H), in which two vertices are adjacent if and only
if the corresponding edges of H have at least one vertex in common. We say that a vertex
xr € V(Q) is simplicial if (Ng(x))g is a complete graph, and we use Vg;(G) to denote the set
of all simplicial vertices of G.

For z,y € V(G), a path (trail) with endvertices x, y is referred to as an (z,y)-path ((x,y)-
trail), a trail with terminal edges e, f € E(Q) is called an (e, f)-trail, and Int(7") denotes the
set of interior vertices of a trail T. A set of vertices M C V(G) dominates an edge e, if e
has at least one vertex in M, and a subgraph F' C G dominates e if V(F') dominates e. A
closed trail T is a dominating closed trail (abbreviated DCT) if 7' dominates all edges of G,
and an (e, f)-trail is an internally dominating (e, f)-trail (abbreviated (e, f)-IDT) if Int(T")
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dominates all edges of G. A graph is Hamilton-connected if, for any u,v € V(G), G has a
hamiltonian (u,v)-path, i.e., an (u,v)-path P with V(P) = V(G).

Finally, if F is a family of graphs, we say that G is F-free if G does not contain an induced
subgraph isomorphic to a member of F, and the graphs in F are referred to in this context
as forbidden (induced) subgraphs. If F = {F'}, we simply say that G is F'-free. Here, the claw
is the graph K 3, P; denotes the path on i vertices, and I'; denotes the graph obtained by
joining two triangles with a path of length i (see Fig. 1(d)). Several further graphs that will
be used as forbidden subgraphs are shown in Fig. 1(a), (b), (¢). Whenever we will list vertices
of an induced claw K 3, we will always list its center as the first vertex of the list, and when
listing vertices of an induced subgraph F' ~ 7, we will always list first the vertices by, b,
and then the vertices ag, ay, ..., a;. Similarly, when listing vertices of an S; j; in a graph (see
Fig. 2(a)), we will always write the list such that i < j < k, and we will use the notation
Sijk(viaias ... a;;biby ... bjscica ... ¢p) (in the labeling of vertices as in Fig. 2(a)). The vertex
v will be called the center, and the paths va;...a;, vby...b;, vey...cp will be called the
branches of the S j 1.
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Figure 1: The graphs Z;, B; ; and N; ;1

We also recall two well-known graphs that will occur as exceptions in some of the results,
namely, the Petersen graph II and the Wagner graph W (see Fig. 2(b), (¢)). It is a well-known
fact that the Wagner graph can be obtained from the Petersen graph by removing an arbitrary
edge and suppressing the two created vertices of degree 2. We will often refer to these graphs
using the labeling of their vertices as indicated in Fig. 2.
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Figure 2: The graph S; ;x, the Petersen graph II and the Wagner graph W

Theorem A lists the best known results on pairs of forbidden subgraphs implying Hamilton-
connectedness of a 3-connected graph.

Theorem A [4, 7, 14, 15,16, 21].  Let G be a 3-connected { K 3, X }-free graph, where
(i) [7] X =Ty, or
(17) [4] X = Py, or
(iii) [21] X = Zg, or



(iv) [21] X =B;,; fori+j <7, or
(v) [14,15,16] X =N, fori+j+k<T.
Then G is Hamilton-connected.

Note that statement (ii7) is an immediate corollary of (iv).

Let W be the family of graphs obtained by attaching at least one pendant edge to each
of the vertices of the Wagner graph W (see Fig. 2(c)), and let G = {L(H)| H € W} be the
family of their line graphs. Then any G € G is 3-connected, non-Hamilton-connected, Pjg-free,
B, j-free for 1 4+ j = 8, and N, j,-free for i + j + k = 8. Thus, this example shows that parts
(1), (iv) and (v) of Theorem A are sharp.

Let W1 be the graph obtained from W by attaching exactly one pendant edge to each of
its vertices. The following theorem is our main result.

Theorem 1. Let G be a 3-connected { K, 3, Z}-free graph such that G % L(W"'). Then G
is Hamilton-connected.

Proof of Theorem 1, consisting in direct case-distinguishing, is postponed to Section 4.

The exceptional graph L(W') is 3-connected { K| 3, Z7 }-free and not Hamilton-connected,
showing that the assumption G % L(W!) in Theorem 1 cannot be omitted. Also, for each

graph H € W\ {W'}, L(H) is 3-connected {K 3, Zs}-free and not Hamilton-connected,
showing that Theorem 1 is sharp.

Since |V (L(W1))| = 20, Theorem 1 has the following immediate corollary.

Corollary 2.  Let G be a 3-connected {K 3, Z }-free graph of order n > 21. Then G is
Hamilton-connected.

In Section 2, we collect necessary known results and facts on line graphs and on closure
operations, and, in Subsection 2.5, we develop a method that allows to overcome the difficulty
that the class of {K 3, Z;}-free graphs is not stable under closure operations. In Section 3,
we develop a technique that allows to significantly reduce the number of cases to be consid-
ered. Finally, in Section 5, we briefly update the discussion of remaining open cases in the
characterization of forbidden pairs for Hamilton-connectedness from [15] and [21].

2 Preliminaries

In Subsections 2.1 — 2.4, we summarize some known facts that will be needed in our proof
of Theorem 1, and in Subsection 2.5, we introduce a superclass of the class of { K 3, Z; }-free
graphs that is stable under the closure operations.

2.1 Line graphs of multigraphs and their preimages

While in line graphs of graphs, for a connected line graph G, the graph H such that G = L(H)
is uniquely determined with a single exception of G = K3, in line graphs of multigraphs this
is not true: a simple example are the graphs H; = Z; and Hs a double edge with one pendant



edge attached to each vertex — while H; % Hs, we have L(H;) ~ L(H,). Using a modification
of an approach from [23], the following was proved in [19].

Theorem B [19]. Let G be a connected line graph of a multigraph. Then there is, up to an
isomorphism, a uniquely determined multigraph H such that a vertex e € V(G) is simplicial
in G if and only if the corresponding edge e € E(H) is a pendant edge in H.

The multigraph H with the properties given in Theorem B will be called the preimage
of a line graph G and denoted H = L™'(G). We will also use the notation a = L(e) and
e = L™ !(a) for an edge e € F(H) and the corresponding vertex a € V(G).

An edge-cut R C F(H) of a multigraph H is essential if H — R has at least two nontrivial
components, and H is essentially k-edge-connected if every essential edge-cut of H is of size
at least k. It is a well-known fact that a line graph G is k-connected if and only if L™(G)
is essentially k-edge-connected. It is also a well-known fact that if X is a line graph, then a
line graph G is X-free if and only if L™!(G) does not contain as a subgraph (not necessarily
induced) a graph F' such that L(F) = X. We give more details on this correspondence in
Subsection 2.5 (Proposition 7).

Harary and Nash-Williams [10] established a correspondence between a DCT in H and a
hamiltonian cycle in L(H). A similar result showing that G = L(H) is Hamilton-connected
if and only if H has an (ey, e2)-IDT for any pair of edges ey, es € E(H), was given in [13] (in
fact, part (i) of the following theorem is slightly stronger than the result from [13], and its
easy proof is given in [14]).

Theorem C [10, 13]. Let H be a multigraph with |E(H)| > 3 and let G = L(H).
(7) [10] The graph G is hamiltonian if and only if H has a DCT.
(17) [13] For every e; € E(H) and a; = L(e;), i = 1,2, G has a hamiltonian (ay, as)-path if
and only if H has an (ey, e2)-IDT.

2.2 Strongly spanning trailable multigraphs

A multigraph H is strongly spanning trailable if for any e; = uyvy, €5 = ugvy € E(H) (possibly
e1 = e3), the multigraph H(eq,e3), which is obtained from H by replacing the edge e; by a
path ujve,v; and the edge es by a path usv,,ve, has a spanning (v, , v, )-trail.

We will need the following two results on “small” strongly spanning trailable multigraphs
from [16]. Here, W is the set of multigraphs that are obtained from the Wagner graph W by
subdividing one of its edges and adding at least one edge between the new vertex and exactly
one of its neighbors.

Theorem D [16].
(1) Every 2-connected 3-edge-connected multigraph H with circumference ¢(H) < 8 other
than the Wagner graph W is strongly spanning trailable.
(17) Every 3-edge-connected multigraph H with |V (H)| < 9 such that H ¢ {W}UW is
strongly spanning trailable.



2.3 SM-closure

For z € V(G), the local completion of G at x is the graph G, = (V(G), E(G) U {y1y2| y1,y €
Ng(z)}) (ie., G, is obtained from G by adding all the missing edges with both vertices in
Ng(x)). Obviously, if G is claw-free, then so is G,. Note that in the special case when G is
a line graph and H = L~Y(G), G, is the line graph of the multigraph obtained from H by
contracting the edge L™ (z) into a vertex and replacing the created loop(s) by pendant edge(s).
Also note that clearly z € Vs;(G,) for any z € V(G), and, more generally, Vs;(G) C Vsr(G.,)

for any z € V(G).

We say that a vertex = € V(G) is eligible if (Ng(z))¢ is a connected noncomplete graph,
and we use Vg1 (G) to denote the set of all eligible vertices of G. Note that in the special case
when G is a line graph and H = L™'(G), it is not difficult to observe that z € V(G) is eligible
if and only if the edge L™'(x) is in a triangle or in a multiple edge of H. Based on the fact
that if G is claw-free and z € Vg1 (G), then G, is hamiltonian if and only if G is hamiltonian,
the closure cl(G) of a claw-free graph G was defined in [18] as the graph obtained from G
by recursively performing the local completion operation at eligible vertices, as long as this
is possible (more precisely: cl(G) = Gy, where Gy, ..., Gy is a sequence of graphs such that
G =G, G = (G,); for some x; € Vg (G),i=1,...,k—1, and Vg.(Gr) = 0). The closure
cl(G) of a claw-free graph G is uniquely determined, is a line graph of a triangle-free graph,
and is hamiltonian if and only if so is G. However, as observed in [6], the closure operation
does not preserve the (non-)Hamilton-connectedness of G.

To overcome this problem, the concept of an SM-closure GM of a claw-free graph G was
defined in [12] by the following construction.
(i) If G is Hamilton-connected, we set GM = cl(G).

(77) If G is not Hamilton-connected, we recursively perform the local completion operation
at such eligible vertices for which the resulting graph is still not Hamilton-connected,
as long as this is possible. We obtain a sequence of graphs G, ..., G} such that

® Gl = G,

o G = (Gz); for some x; € VEL(Gz), 1=1,...,k—1,

e G} has no hamiltonian (a, b)-path for some a,b € V(Gy),

e for any = € Vg1 (Gy), (G}), is Hamilton-connected,

and we set GM = @G,

A resulting GM is called a strong M-closure (or briefly an SM-closure) of the graph G, and a
graph G equal to its SM-closure is said to be SM-closed. Note that for a given graph G, its
SM-closure is not uniquely determined.

As shown in [19] and [12], if G is SM-closed, then G = L(H), where H does not contain
as a subgraph (not necessarily induced) any of the multigraphs shown in Fig. 3.
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Figure 3: The diamond 77, the multitriangle 7, and the triple edge T3



The following theorem summarizes basic properties of the SM-closure operation.

Theorem E [12]. Let G be a claw-free graph and let G be its SM-closure. Then GM has
the following properties:
(i) V(G) = V(GM) and E(G) C E(GM),
(ii) GM is obtained from G by a sequence of local completions at eligible vertices,
(i17) G is Hamilton-connected if and only if GM is Hamilton-connected,
(iv) if G is Hamilton-connected, then GM = cl(G),
) if G is not Hamilton-connected, then either
(@) Ve (GM) =0 and GM = cl(G), o
(B) Ver(GM) # 0 and (GM), is Hamz]ton connected for any x € Vi (GM),
(vi) GM = L(H), where H contains either
() at most 2 triangles and no multiedge, or
(B) no triangle, at most one double edge and no other multiedge,
(vii) if GM contains no hamiltonian (a,b)-path for some a,b € V(GM) and
(a) X is a triangle in H, then E(X) N {L_y(a), GM( )} #0,
(8) X is a multiedge in H, then E(X) = {Lz(a), Lo (b)}.

We will also need the following lemma on SM-closed graphs proved in [20].

Lemma F [20]. Let G be an SM-closed graph and let H = L™*(G). Then H does not
contain a triangle with a vertex of degree 2 in H.

2.4 The core of the preimage of an SM-closed graph

The definition of the core is slightly problematic for multigraphs, therefore we restrict our
observations to the case that we need, i.e., to preimages of 3-connected SM-closed graphs.
The difficulties then do not occur since such a multigraph cannot have pendant multiedges by
Theorem B, and cannot have pendant multitriangles (since there are no multitriangles at all).

Thus, let G be a 3-connected SM-closed graph and let H = L™!(G). The core of H is the
multigraph co(H) obtained from H by removing all pendant edges and suppressing all vertices
of degree 2.

Shao [22] proved the following properties of the core of a multigraph.

Theorem G [22]. Let H be an essentially 3-edge-connected multigraph. Then
(1) co(H) is uniquely determined,
(i1) co(H) is 3-edge-connected,
(1ii) V(co(H)) dominates all edges of H,
(1v) if co(H) has a spanning closed trail, then H has a DCT.
(v)

v) if co(H) is strongly spanning trailable, then L(H) is Hamilton-connected.



2.5 Closure operations and Z;-free graphs

When applying closure techniques to { K 3, Z; }-free graphs, we encounter a problem consisting
in the fact that, for a { K3, Z;}-free graph G and x € Vi1 (G), the local completion G, is not
necessarily Z;-free. Although it can be shown [8] that cl(G) finally becomes Z;-free, graphs that
occur during the construction of cl(G), hence also an SM-closure, can contain an induced Z;
(in the terminology of [17], the class of { K} 3, Z;}-free graphs is weakly stable but not stable
under the closure operation). In this paper, we overcome this difficulty by working in a slightly
larger class of graphs which contains all { K 3, Z; }-free graphs and is stable under the closure.

For a graph F' ~ Z;, we will use Tr to denote the triangle of F' and Vo(TF) to denote the
(two-element) set of the vertices in Tr that are of degree 2 in F. We define a class Z°7 as
follows.

For an integer i > 1, Z77 is the class of all claw-free graphs G such that every induced
subgraph F C G, F ~ Z;, satisfies |V3(Tr) N Vs (G)| > 1.

Clearly, Z7T contains all {K 3, Z;}-free graphs.

Throughout the rest of this subsection, we will keep the notation of vertices of an induced
Z; as in Fig. 1(a). For an induced F ~ Z; in G, we will call the edges in E(F) \ E(G) new
edges, and we will denote E(F) \ E(G) = new(F).

Lemma 3. Let G € Z°!' and v € V(G). Then G, € Z'.

Proof. Let, to the contrary, G € Z7! and = € V(G) be such that G, contains an induced
subgraph F' ~ Z; with Vo(Tr) N Vs (G,) = 0. Then also Vo(Tr) N Vs (G) = O (recall that
Vsi(G) C Vsi(G)), and since G € 25T, we have new(F) # 0.

Suppose first that new(F) N E(Tr) = (), and let, say, e = ajaj11 € new(F) for some
J, 0 < j <i—1. Then we have a;z,a;12 € F(G) since e € E(G,)\ E(G), and vz ¢
E(G) for any v € V(F) \ {aj,a;11} since F is induced in G,. But then the graph F’ =
({b1,ba, a0, ... a5, 2,aj41,...,0,-1})c is an induced Z; in G with Va(Tp) N Vs (G) = 0, con-
tradicting the assumption that G € Z;.

Thus, we have new(F) C E(Tr). If new(F) = E(Tr), then ({x,b1,b2,a0})c ~ Ki3, a
contradiction. Hence 1 < |new(F)| < 2.

Let first [new(F)| = 1. If new(F') = {b1ba}, then ({ao, b1, b2, a1})¢ ~ K 3, a contradiction.
Thus, up to a symmetry, new(F) = {agb; }. Then necessarily x # by (otherwise we would have
by € Vs1(G,), contradicting the assumption that Vo(Tr) N Vs (G,) = 0), and box € E(G), for
otherwise ({ag, b2, z,a1})e ~ Ki3. Then G contains F' = ({z, b, ap,a1,...,a;})¢ ~ Z; with
Vo(Tr) = {x, b2}, and {x,bs} N Vs (G) = 0, a contradiction.

Thus, [new(F')| = 2. Then {b1,bs,a0} C Ng(z) and, up to a symmetry, either new(F') =
{aoby, aghs }, or new(F') = {b1by, agbs }, but in the first case F' = ({by, bs, x, ag, . .., a;_1})qg, and
in the second case F' = ({by, x, a9, a1,...,a;})¢ is an induced Z; in G with Vo(Tr )NV (G) =
(), a contradiction. [ |

Next we define a class Z as follows.

For an integer i > 1, ZI' is the class of all claw-free graphs G satisfying the following
condition:



(%) for every induced subgraph F ~ Z; in G, there is a vertex xp € Vg1 (G) such that
V(Tr) C Ng(zr) and <V(F))G;F * 7.

Clearly, Z! contains all {K] 3, Z; }-free graphs.
Lemma 4. Let G € ZI' and v € Vg (G). Then G, € ZT.

Proof. Let G € ZI and z € V(G) be such that G, contains an induced subgraph F ~ Z,
not satisfying condition (x). Since G € Z!', necessarily new(F) # ) (where, as in the proof of
Lemma 3, we denote new(F) = E(F) \ E(G)).

Suppose first that new(F) N E(TF) = 0, and let, say, ajaj41 € new(F) for some j,
0 < j < i—1 Then we again have Ng(z) N V(F) = {aj,a;11}, implying that F’' =
({b1, b2, a0, ...,a5,2,a;41,...,0;-1})e >~ Z;. Since G € ZI', there is a vertex zp € Vi1 (G)
with the properties given by condition (x). Since (V(F”))g: % Zi, xp has, besides V(Tp) =
V(Tr), another neighbor in V(F”), and since F' does not sa’gisfy (x), zpr is adjacent to x in G,
and z is in G the only neighbor of 2 in V/(F')\ V(Tp). But then ({z,zp, aj,a;41})c =~ K13,
a contradiction. Thus, new(F) C V(TF).

Let first x € V(Tr). Then necessarily |new(F)| = 1. If x = ag, then new(F) = {b1by},
and then ({ao,b1,b2,a1})e ~ Ki3, a contradiction. Thus, up to a symmetry, + = b; and
new(F) = {apbe}. Let aguy...uiby be a shortest (ag,by)-path in (Ng(x))e (it exists since
z € Vgi(G)). Necessarily £ > 1 since apby ¢ E(G). If wya; € E(G) for some j, 1 < j <,
then, observing that u; € Vg (G) (otherwise uy is a center of a claw in G), we have also
u; € Vpr(G,), and then <V(F)>(G;)§;1 o Z;, contradicting the assumption that F does not
satisfy (). Hence wia; ¢ E(G), 1 < j <1, implying that F' = ({by,u1,ao,...,a;})c =~ Z;. By
the assumption, G satisfies (%), hence there is a vertex zp € Vg (G) such that {by,us, a0} C
Ng(zp) and (V(F"))g: % Z;. But then zp € Ng(z), hence byrp € E(G,), and then
also (V(F )>(G:);F, o ZiF, contradicting the assumption that F' does not satisfy (x). Hence
z ¢ V(Tr).

Suppose that [new(F)| = 1. If new(F) = {bibo}, then ({ag,b1,b2,a1})c ~ K3, a con-
tradiction. Hence, up to a symmetry, we have new(F') = {agb:}, implying that {ag,b;} C
Ng(z). Then also box € E(G), for otherwise ({ag,bs,z,a1})¢ =~ Kiz, and then F' =
({by, ,a9,a1,...,a;})a =~ Z;. Since G € ZI' there is a vertex zp € Vgr(G) such that
{bg, z,a0} C Ng(zp) and (V(F’))G;F/ o Z;. Then also byzp € E(G,) (since {xb,zxp} C

E(G)), and (V(F))*): % Zi, contradicting the assumption that F' does not satisfy (x).
z) oy
Thus, we have |new(F)| = 2.
Suppose that new(F) = {agbi,apb2}. Then we have {ag,b1,b2} C Ng(z) and F/' =

({b1,ba, x,a0,...,a;-1})c ~ Z;. Since G satisfies (%), there is a vertex xp € Vg (G) such
that {b1,b2,2} C Ng(zp) and (V(F'))q # Z;, implying that zpa; € E(G) for some
T g
4, 0 < j < i—1 (note that we have zpay € E(G,), but not necessarily zmag € E(Q)).
If vpa; € E(G) with 1 < j < i — 1, then (V(F))gsy: 2% Zi, a contradiction. Hence
)T gy

rpay € FE(G), and then we have a contradiction by the same argument for the subgraph
F// = <{$7$F/,Cl0, . 7ai}>G ~ Zl



Thus, up to a symmetry, we have new(F') = {b1bs, agb1}. Then again {ag, b, b2} C Ng(z)
and F' = ({bs, 2, a9, ...,a;})g =~ Z;. By condition (%) in G, there is a vertex x € Vg (G) such
that {bs, z,a0} C Ng(xp) and (V(F'))q= % Z;, and then byzp € E(G,) and (V(F))g=y:  #

T oy @)@

Z;, a contradiction. [ |
Now we can define a class of graphs Z;, 1 > 1, by
Z,=2nZzl.
By Lemmas 3 and 4, we immediately have the following fact.
Theorem 5. Let i > 1 be an integer and let G € Z; and x € Vg (G). Then G, € Z;.
Theorem 5 has the following immediate corollary.

Corollary 6. Let G be a {K 3, Z;}-free graph and let GM be an SM-closure of G. Then
GM ¢ Z,.

In our proof of Theorem 1, we will work in the (multi)graph H = L~Y(G™), where GM
is an SM-closure of the 3-connected { K 3, Z7}-free graph under consideration. For this, with
respect to Corollary 6, we need to “translate” the properties of graphs from the class Z; to
the preimage H = L~1(GM).

First of all, it is necessary to note that clearly L(S11,41) = Z;, but for the graph Ss;,1,
obtained by identifying a vertex of a double edge with an endvertex of a path of length
i + 1 (see Fig. 4), we also have L(S3,;,,) = Z;. Although apparently L~(Z;) = Si1,41 by

A g

vV
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Figure 4: The multigraph Ss;

Theorem B, it is still possible that, for an induced subgraph X ~ Z; of a line graph G, the
subgraph of H = L™!(G), corresponding to X, is isomorphic to S5;,; (an easy example is the
graph G obtained by replacing an edge of a sufficiently large cycle with a diamond, in which
H = L7!(G) contains a double edge, and every induced Z; in G corresponds to an S3,,; in
H). However, it turns out that this is not possible if G € Z;.

Proposition 7. Let G € Z;, i > 1, be a line graph, and let H = L™'(G). Let X be an
induced subgraph of G, and let F C H be the corresponding subgraph of H. Then
(¢) H does not contain a subgraph (not necessarily induced) isomorphic to Ss ;. 1,
(ZZ) X ~ ZZ if and only if I~ Sl,l,i+1;
(i4i) every subgraph F' C H, F ~ S 1,41, satisfies the following conditions:
() at least one branch of length 1 of F' is at a pendant edge of H, and
(B) there is a triangle or a double edge in H containing the center of F' and at least
one further vertex on the branch of length v 4+ 1 of F.



Proof. (i) If Ss;41 C H, then G contains as an induced subgraph the graph X =
L(S5,41) ~ Z; such that the vertices in V5(T’x) correspond to the two edges of the double edge
in S5;,1, hence are nonsimplicial by Theorem B, contradicting the definition of the class Z27.

(27) It is straightforward to verify that there are exactly two (multi)graphs F' such that
L(F) = Z;, namely, S5; and S11,41. Statement (ii) then follows from (7).

(ii1)(a) Since G € ZP!, every induced subgraph X ~ Z; in G satisfies |Va(Tx)NVs(G)] > 1
by the definition of the class Z°1. The rest follows from (i7) and from Theorem B.

(i73)(8) As noted in Subsection 2.3, z € Vgr(G) if and only if the edge L™!(z) is in a
triangle or in a double edge in H. The rest follows from (i7) and from condition (%) in the
definition of the class Z!. ]

In the proof of Theorem 1, we will have to handle the exceptional graph L(W1). For this,
we will need the following simple technical lemma.

Lemma 8. Let G be a claw-free graph and let G be its SM-closure. If G % L(W?), then
GM £ L(WY).

Proof.  Suppose, to the contrary, that GM ~ L(W?!). Let Gy,...,G} be the sequence of
graphs that yields GM, ie., G, = G, G, = G™ and G, = (Gl)w for some x; € Vi (G;),
i=1,...,k—1. We will use the labeling of vertices of the graph W as in Fig. 2(¢), and we will
further denote w] the neighbor of w; in Vi(W1), y; = L(ww}), and y;; = L(ww;) for i,j =
1,...,8 wyw; € E(W). Then clearly Vs;(L(W?')) ={y;| i =1,...,8}, and Vg (L(W)) = 0.

Since w1 € Vsi(Gy) and Gy = GM ~ L(W1), we can choose the notation such that
zr—1 = y1. Then y; € Vgr(Gk-1), hence some of the edges in (Ng, (y1))e, are new edges.
Observe that (Ng, (y1))c, is the triangle ({y12,y15,v18})c,- If one edge, say, yisy1s, i new,
then ({y12, Y15, Y1s, Y23} ), =~ K13, a contradiction, and if two or three edges are new, then
(N, (11))c,_, is not connected, a contradiction again. [ ]

3 A special version of the “Nine-point-theorem”

The well-known “Nine-point-theorem” by Holton et al. [11] states that a 3-connected cubic
graph contains a cycle passing through any 9 prescribed vertices, and its strengthened version
by Bau and Holton [3] claims the same for cycles through 12 vertices, with the Petersen graph
as an exception (proved with the help of a computer). For our purposes, we use a special
version, developed in [14], based on another stronger version by Bau and Holton [2] that deals
with a set of vertices and an edge (proved without computer). For this, we need some more
terminology from [1].

Let G be a multigraph, R C G a spanning subgraph of G, and let R be the set of
components of R. Then G/R is the multigraph with V(G/R) = R, in which, for each edge in
E(G) between two components of R, there is an edge in E(G/R) joining the corresponding
vertices of G/R (note that this means that G/R can have multiple edges even if G is a graph).
The (multi-)graph G/R is said to be a contraction of G. (Roughly, in G/R, components of R
are contracted to single vertices while keeping the adjacencies between them). Clearly, if R is
connected, then G/R = Kj, and if R is edgeless, then G/R = G these two contractions are
called trivial.
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The contraction operation maps V(G) onto V(G/R) (where vertices of a component of R
are mapped on a vertex of G/R). If G/R ~ F, then this defines a function « : G — F which
is called a contraction of G on F.

Throughout the rest of this section, II denotes the Petersen graph.

The following special version of the “nine-point-theorem” was proved in [14].

Theorem H [14]. Let H be a 3-edge-connected multigraph, A C V(H), |A| = 8, and let
e € E(H). Then either

(1) H contains a closed trail T such that A C V(T') and e € E(T), or

(#7) there is a contraction o : H — Il such that a(e) = xy € E(Il) and a(A) = V(II)\{z,y}.

We will also need the following auxiliary result from [14].

Lemma I [14]. Let H be a graph such that co(H) = W. If there is a vertex x € V(co(H))
such that Ny (x) = Neo(m)(x), then L(H) is Hamilton-connected.

Theorem 9. Let G € Z; be a 3-connected SM-closed graph such that G % L(W1) and
co(H), where H = L7Y(G), is 2-connected, and let ey,e5 € FE(H) be such that there is no
(e1,e2)-IDT in H. Then for every set A C V(co(H)), |A| =8, there is an (ey, e3)-trail T' in H
such that A C Int(T).

Proof. First of all, it should be noted here that some parts of the proof of Theorem 9
are (almost) the same as the corresponding parts of the proof of Theorem 9 in [14] and of
Theorem 4 in [21]. Since the other parts are quite different, for the sake of completeness, we
give a complete proof here (including the identical parts).

Let H be a graph satisfying the assumptions of the theorem. By Proposition 7, every
subgraph (not necessarily induced) of H, isomorphic to S g, has its center in a triangle or a
double edge and at least one of its branches of length 1 at a pendant edge.

Let H' be the graph obtained from H by the following construction:

(1) if ey, es share a vertex of degree 2, say, e; = v;v, i = 1,2 with v € Vo(H), we suppress

v and set h = vyv9,
(77) otherwise, we subdivide e; (or some edge in co(H) sharing a vertex with e; if e; is
pendant) with a vertex v;, ¢ = 1,2, and add a new edge h = vyv,.
If there is no contraction « : H" — II such that o/(h) = z129 € E(II) and o/(A) = V(II) \
{1, x5}, then, by Theorem H, there is a closed trail 7" in H’ such that A C V(T") and
h € E(T'). Returning to H, i.e., subdividing h in case (i), or removing h and suppressing
v1,v9 (and extending the trail to e; if e; is pendant) in case (i7), we obtain an (eq, e3)-trail T
in H with A C Int(T).

Thus, we suppose that there is a contraction o : H' — II such that o/(h) = 129 €
E(Il) and o/(A) = V() \ {x1,22}. In case (i), H contains a subgraph isomorphic to the
Petersen graph with at least one subdivided edge which contains the graph S;;g: in the
labeling of vertices as in Fig. 2(b), if, say, the edge pipl is subdivided with a vertex ¢, we
have Sy 18(pl; q; pi; pipipipipipip2ps) as a subgraph of H with both branches of length 1 at
nonpendant edges, a contradiction. Thus, for the rest of the proof, we suppose that H’ is
obtained by construction (7).
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Set Hy = co(H), and recall that Hy is 3-edge-connected (since H is essentially 3-edge-
connected). Let R’ be the spanning subgraph of H' that defines «’, and suppose that, say,
the component R; = (o/)7'(z;) of R’ is nontrivial. Since x; € V/(II), the subgraph R; is
separated from the rest of H' by a 3-edge-cut containing the edge h, implying that in Hy, the
subgraph R; — vy is separated from the rest of Hy by a 2-edge-cut, contradicting the fact that
H, is 3-edge-connected. Hence (a/)™'(z1), and symmetrically also (/)™ (z3), are trivial, i.e.,
V((e) " (z;)) = {vi}, i = 1,2. Removing from H’ the edge h and suppressing v; and vy, we
obtain from R’ the corresponding spanning subgraph R of H, and from R, in a standard way
a spanning subgraph Ry of Hy. Note that clearly every component of R’ except {v;} and {vy}
corresponds to a nonempty component of Ry since o maps H' on a cubic graph and hence
every component of R’ must contain a vertex of degree more than 2. Then the components
of Ry define a contraction a : Hy — W, where W is the Wagner graph (see Fig. 2(c); recall
that W can be obtained from II by removing an edge and suppressing the created vertices of
degree 2).

Case 1: o !(w) is trivial for any w € V(W).
Then we have Hy ~ W. By Lemma I, every vertex of Hy is incident in H to a pendant edge
or to a subdivided edge.

Subcase 1.1: no edge of Hy is subdivided in H.

Then, by Lemma I, each vertex of Hy is incident in H with at least one pendant edge,
i.e., Hy € W, and at least one vertex, say, wy, is incident in H with at least two pendant
edges since G % L(W?) by the assumption of the theorem. Let w/,w} be two neighbors
of wy of degree 1 in H, and let w§ be a neighbor of wg of degree 1 in H. Then H contains
S1.1.8(wr; wi; ws wawswswswewrwswg). By Proposition 7(4ii) (), wy is in a triangle or in
a double edge; however, Hy ~ W, hence also H, contains neither a triangle nor a double
edge, a contradiction.

Subcase 1.2: at least one edge of Hy is subdivided in H.

Suppose first that some of the edges w;w;4 (indices modulo 8) is subdivided in H, say,
wiws is subdivided with a vertex wy;. By Lemma I, w3 has a pendant edge, or some edge
incident to ws is subdivided. By symmetry, we have the following possibilities:

Case Contradiction
Pendant edge wsw} S1.1.8(ws; wh wa; We W5 WsWeWWSWY)
WoWs3 subdivided with Wa3 Sl,1,8 (U)Q, W23, We, w1w15w5w4w3w7wgwg)
Ww3wy subdivided with Ws7 51,1,8 (w3, W37, Wy, w2w1w15w5w6w7wgwé)

where wf is a neighbor of wg in V(H) \ V(Hy) which exists by Lemma I (note that w}
can be a vertex of degree 2, subdividing some of the edges incident to wsg, in which case
the last two vertices of the long branch can occur in reverse order).

Thus, we can suppose that none of the edges w;w;,4 is subdivided, thus, say, wiws is
subdivided with a vertex wis. Then similarly w3 has a pendant edge or some of the edges
wows, wswy is subdivided, and we have the following possibilities:
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Case Contradiction
Pendant edge wsw} S1.1.8(ws; wh; Wy Waw 2wy WsWeW7WWE)
wows subdivided with wag | S1.1.8(wa; Was; We; Wi2wW WsW4W3sW7WWE)
wswy subdivided with wsy | S1.18(ws; Was; Wr; Waw2wy WsW4WsWEWY)

where again wg (wg) is a neighbor of wg (of wg) in V(H)\ V (Hy), and the last two vertices
of the long branch can occur in reverse order if w§ (wy) is of degree 2.

Since the graph Hj, hence also H, contains neither a triangle nor a double edge, each of
the above subgraphs contradicts the fact that G € Z;.

Case 2: a~!(w) is nontrivial for some w € V(W).

Let RY,..., RY be the components of the graph Ry that defines a, and choose the notation
such that RY = o~ (w;), i = 1,...,8, and such that R? = a~!(w,) is nontrivial. Recall that
U, (V(RY)) = V(Ry) = V(Hy). Let R; be the component of R that corresponds to RY,
i=1,...,8 (ie, U (V(R)) =V(R) =V(H)).

We observe that ej,eq € E(Hp) \ E(Rp) since, by the construction of H', a™(z;) = v; are
trivial and after deleting the edge h and suppressing the vertices vy, vy, each of the edges
e1,eo has its vertices in different components of Ry, hence also in different components
of R. By Theorem E(vi),(vii), this implies that each R; is a triangle-free (simple) graph.
Moreover, each RY is 2-edge-connected since RY = a~!(w;) is separated from the rest of Hy
by a 3-edge-cut and a cut-edge in RY would create a 2-edge-cut in Hy.

We introduce the following notation. For any edge wyw; € E(W), we set fi; = a™H(ww;)
(ie., fi; joins RY and RY), and we denote b} its vertex in R? and b its vertex in R}. Thus,
we e.g. have Ap (RY) = {b3, b bl}, where 2 < [{b3,b}, 08} < 3, and {fi2, fi5, fis} is the
3-edge-cut that separates R} from the rest of Hy.

Claim 1.  Let R} be a component of Ry, 1 < i < 8, and let Ag,(R]) = {b} 0%, 0 }.

Then there is a vertex d' € V(RY) and three internally vertex-disjoint (possibly trivial)
(d', 0, )-paths P}, k=1,2,3.

Proof. Let P be an arbitrary (possibly trivial) (b} ,0% )-path in R, and let P} be a

J17 72

shortest (d',b%,)-path with d° € V(P). Then the vertex d’ and the paths P} = d'Pb}

. . . . . . ]
P;, = d'Pb;, and P} have the required properties. U

Claim 2. The component R; contains a cycle C' of length at least 4, vertices ¢y, cs5,cs €
V(C) and paths Q}, Q4, Q% (possibly trivial) such that
(Z) 2< |{CQ’C5768}| <3,
(i1) Q) is a (cq,b)-path, QL is a (cs,bi)-path and Q} is a (cg, b})-path,
(ii7) the paths Q), Qi Q} are internally vertex-disjoint.

Proof. Let d' and Py, P}, P} be the vertex and paths in RY given by Claim 1. Since RY is
nontrivial, at least one of Py, P}, P{ is nontrivial. Suppose that, say, P. is nontrivial. We
consider a (b}, b})-path P and choose two edge-disjoint paths P, P/ such that

o P isa (b}, cy)-path and P/ is a (bi, cg)-path for some ¢y, cg € V(P),

e if ¢y # cg, then ¢y is on P between cg and b}, and
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® ¢, cs, Pl and P! are chosen such that |E(FL)| + |E(PY)| is smallest possible.

If ¢ # cs, we choose c¢; as the last common vertex of P! and P!, and we set Cy =
coPcgPlesPley, Q) = coPibl, QF = cg Pibi, and, say, Qf = ¢ Pib. If ¢y = cg, we choose ¢
as the last common vertex of P} and P/ distinct from the vertex ¢y = cg (possibly c5 = b}),
and set Cy = coPlesPllco, Q3 = caPiby, Qf = cs Pibg, and, say, Qi = c5 PLb:.

If P, or Py is nontrivial, we get Cp, @3, @} and @} in the same way with the only difference
that possibly ¢5 = cg or ¢y = cs.

We have obtained a cycle Cy and paths Q3, Qf and @} in R? (note that Cy can possibly be
a triangle or a double edge). Now, let C' be the cycle in Ry that corresponds to the cycle
Co, and, with a slight abuse of notation, let Q3, Q% and @} be the corresponding paths in
Ry. Then |V(C)| > 4 since R, is a triangle-free simple graph, and clearly Cp, Q3, Q} and
Q4 have the requested properties. U

For the requested graph S;; g, we describe a subgraph of H in which it is contained. Here,
for integers 1o, jo, ko, 1 < 79 < jo < ko, we use S>>y, >k t0 denote a graph containing an
Sio.jo.ke 88 a subgraph. If a component RY contains the vertex of degree 3 of the S, > o >ko-
then it is located in the vertex d' and uses the paths Pj , k = 1,2,3, given by Claim 1,
and for any other component RY, 2 <4 < 8, and b}, b}, € Ap,(R}), we use Q' to denote
an arbitrarily chosen (b;7 bt )-path in RY (of course, if R is trivial, all these paths collapse
to a single vertex). If we relabel the vertices of the cycle C' given by Claim 2 such that
C = uuy ... uy(c) with u; = cp, then the requested subgraph, containing S; s, can be
described as S>1>1,>s(d*; Pib}; Poby; PeQf 1QF 6Q% ,Q8 1 Q3urususuy). Since b}, b € V(Hy),
the branches of length 1 of the S; ;5 are at nonpendant edges, contradicting the fact that
G e Z;. [ |

4 Proof of Theorem 1

The following lemma, combining techniques developed in the previous sections, will be crucial
in our proof.

Lemma 10. Let G be a 3-connected non-Hamilton-connected SM-closed claw-free graph.
Then G has an induced subgraph G (possibly G = G) such that G is 3-connected, non-
Hamilton-connected and SM-closed, and, moreover, Hy = co(L~'(G)) is 2-connected, and
either ¢(Hy) > 9 and |V(H)| > 10, or Hy € {W} UW.

Proof. Let H= L7 Y(@), and set Hy = co(H). By Theorem G(ii), Hy is 3-edge-connected.

Suppose first that Hy is not 2-connected, let BY, ..., BY be blocks of Hy, let By, ..., By be
the corresponding subgraphs of H (i.e., BY = co(B;), i = 1,...,b), and let B! be obtained
from B; by attaching a pendant edge to every vertex which is a cutvertex of Hy, i =1,...,0.
Then obviously co(B!) = co(B;) = BY, and B is 2-connected, i = 1,...,b. If every B!
has an (f1, f2)-IDT for any fi, fo € E(B!), then an easy induction shows that G = L(H) is
Hamilton-connected, a contradiction. Hence there is a Bj having no (fi, f2)-IDT for some

fi, fo € E(B]).
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Set H = B;, and G = L(H). Then G is an induced subgraph of G (since H is a subgraph of
H), is 3-connected (since H is essentially 3-edge-connected), non-Hamilton-connected (since
H = Bj hasno (f1, f2)-IDT) and SM-closed (since a local completion in G is a local completion
in G), and, by the construction, Hy = co(H) = B} is 2-connected. By Theorem G(v), Hy is
not strongly spanning trailable, implying that, by Theorem D, c¢(Hy) > 9 and |V (Hp)| > 10,
unless Hy ~ W or Hy € W. [ |

Proof of Theorem 1. Let G be a 3-connected {K; 3, Z;}-free graph, and suppose, to the
contrary, that G is not Hamilton-connected. By Theorem E, by Corollary 6 and by Lemma 8,
we can suppose that G is SM-closed, G € Z7, and G % L(W?). Let thus H = L™'(G). By
Proposition 7, H contains no subgraph isomorphic to S35, and every subgraph of H isomorphic
to 5118 has its center in a triangle or a double edge and at least one of its branches of length 1
at a pendant edge.

Set Hy = co(H). By Theorem G(iz), Hy is 3-edge-connected. By Lemma 10, we can
suppose that Hy is 2-connected with c¢(Hy) > 9 and |V (Hp)| > 10, unless Hy ~ W or
Hy € W. However, if Hy ~ W, then, by Theorem 9 and since |V (Hy)| = 8, H has an
(e1,€2)-IDT for any ej,es € E(Hp) and hence also for any ej,ey € E(H), implying that
G = L(H) is Hamilton-connected, a contradiction. So, let next Hy € W, and let {e;,es} be
a double edge in Hy. By symmetry, we can suppose that V(e;) = V(es) = {wy, v}, where
v € Vo(H) subdivides either the edge wyws or the edge wyws. If {e1,es} is a double edge
also in H, then ejvwwwsw wswewrwsgey Or €W WeW3WWsWeWrwses is an (e, e9)-IDT in
H, contradicting Theorem E(vii)(f). Thus, by Lemma F, both e; and ey are subdivided
in H, say, e; with a vertex v; € Vo(H), i = 1,2. Then, if v subdivides wjwy, H con-
tains the subgraph S} 1 §(v; v1; Va5 WowswWawWsWewrwswy ), and if v subdivides wyws, H contains
S1.1.8(0; v1; Va3 WswWewWrwWsW Wawswy). In both cases, we have an S ;g in H with both branches
of length 1 at nonpendant edges, a contradiction.

Thus, we have ¢(Hy) > 9 and |V (Hy)| > 10. We consider the possible cases separately.

Throughout the proof, in each of the cases, C' always denotes a cycle C' = 125 ... Ty
such that

(1) C is a longest cycle in Hy,

(1) subject to (i), C' dominates in H maximum number of edges.
We further denote R =V (H)\V(C), N ={y € V(Hy)| Nr(y) =0}, Ry = RNV (H,), and if
Ry # 0, we set Ry = {y1,...,Y |} and we choose the notation such that y,21 € E(Hy). An
edge x;x; with z;,z; € V(C), 1 <i,j < |V(C)|, will be called a chord of C, and we say that
x;x; is a k-chord if the shorter one of the two subpaths of C' determined by x; and z; has k
interior vertices.

The proof of Theorem 1 consists in a thorough case analysis. In the proof, we will often list
vertices of a subgraph S; ; », and there are two general comments to all these situations.

e When some edge e = z;x; of the S, is in E(Hy), it can always happen that e is
subdivided in H, i.e., formally, e ¢ F(H). However, it is immediate to see that if this
happens, then the corresponding subgraph of H, which instead of e = z;z; contains a
path z;zx; with z € V5(H), also contains S; ; as a subgraph.

e When a vertex z; € V(C) has a (potential) neighbor z € R and the vertex z occurs as
the last vertex of a branch of the S ;x, then such a vertex z can be an endvertex of a
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pendant edge attached to x;, or can be z € Vo(H) and z subdivides some of the edges
incident to x;. It should be noted that in the second case, the vertices x; and z can
occur in reverse order in the list (i.e., x; being the last vertex of the branch).

These facts will be always implicitly understood throughout the proof.

Claim 1. Let {ey,ea} C E(Hy) be a double edge in Hy. Then
(1) {e1,e2} C E(H),
(i1) V(er) = Vi(ea) C V(C),
(i73) if |V (Ho)| = ¢(Hy), then {e1, e} N E(C) = (.

Proof. Set V(ey) = V(ea) = {u1,us2}, let P be a shortest path from u; to C' (possibly trivial
if u; € V(C)), and choose the notation such that P is a (uy,z1)-path (possibly u; = z; if P
is trivial).

(1) If {e1,e2} ¢ E(H), then, by Lemma F, both e; and e, are subdivided in H, say, e; with
avertex v; € Vo(H), i = 1,2. Then the graph S} 1 >s(uy; v1; v9; Pr122x32425262728T9) contains
a subgraph S ;g with both branches of length 1 at nonpendant edges, a contradiction. Hence
{e1, e} is a double edge also in H.

(12) If, say, ug ¢ V(C), then, for the same choice of P as above, H contains the subgraph
S5 58 (U1; Ug; PT12o%30425262728%9), containing an Sz g, a contradiction.

(ii1) If, say, V(e1) = V(ea) = 122, then T = e120x3 . .. Te(py)T1€2 is an (eq, e2)-IDT in H,
contradicting Theorem E(vii)(f). d

Note that clearly a double edge in H is a double edge also in Hy; thus, by Claim 1(i),
{e1,e} is a double edge in H if and only if {e;,e2} is a double edge in Hj.

Claim 2.  If ¢(Hgy) > 10, then no chord of C' is subdivided in H.

Proof. Let, say, z12; € E(Hy) with 3 < i < ¢(Hp) — 1 be subdivided in H with a vertex v €
Vo(H). Then H contains the subgraph Sy 1 8(%1;V; Teo(ry); T2T3T405T6T705%9), a contradiction
(note that the edges x1v, 2127¢(,) are nonpendant). O

Case 1: ¢(Hy) =9 and |V (H,)| > 10.
Claim 3. For any u € V(Hy), |Npg,(u)| <1.

Proof.  Let, to the contrary, vy,v2 € Ng,(u) for some u € V(Hy). If u € V(C), say,
u = 1, then H contains Sy 1 g(u; v1; v2; ToX324T5262723%9), a contradiction; and if u is at
distance 1 from C, say, ux; € E(Hy), then H contains Sy 1 g(u; v1; Ve 1022324 T5T62728), &
contradiction again (note that the edges uvy, uvy are nonpendant since vy, v € V(Hy), and
none of the edges under consideration can be a double edge by Claim 1).

Thus, u is at distance at least 2 from C. Let P be a shortest path from u to C, and
choose the notation such that P is a (u,z;)-path and v; is the successor of u on P. Since
0(Hp) > 3, u has, besides v; and vy, another neighbor v3 € V(Hy), and then H contains
S11,>8(u; va; V35 V1 Pr129w32405T627), a contradiction. O

By Claim 3, we have §((Ro)n,) < 1.
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Subcase 1.1: E((Ro)u,) # 0.

Let y1y2 € E((Ro)n). Since 6(Hy) > 3, by Claim 3 and by Claim 1(i3), each of yy, y has
two neighbors on C' and these neighbors are distinct. Moreover, any two neighbors of any
of y1,y2 must be at distance at least 2 on (', and any neighbor of y; must be from any
neighbor of y, at distance at least 3 on C, for otherwise there is a cycle longer than C.
However, this implies |[V(C)| >3+3+2+2=10> 9 = |V(C)|, a contradiction.

Subcase 1.2: E((Ro)u,) = 0.

Since 0(Hp) > 3 and by Claim 1(i7), every vertex y € Ry has in Hy three distinct neighbors
on C. Since (' is longest, no two neighbors of a y € Ry can be consecutive on C. Let
y1 € Ro. By symmetry, we can choose the notation such that No(yi) D {x1, 23,25},
Neo(y1) = {z1, 24,27}, or No(y1) = {z1, 23, 26}

We set Ry = R\ {y1} and N; = {y € V(H,)| Ng,(y) = 0}.

Claim 4. Let y; € Ry.
(1) If No(y1) D {x1, 23,25}, then {1, x5, 27,28} C Ny.
(27') If NC(yl) = {x17'r47x7}7 then {I2,$37$5,x6,$87[59} C Nl-
(i13) If No(y1) = {x1, 73, x6}, then {4, x5, 28} C Njy.

Proof. (i) If z1 ¢ Ny, then there is a vertex x} € Ng, (1), and H contains the subgraph
S11.8(ws; s kg Y1x5TeT7TsTIT X)), & contradiction; if xg ¢ Ny, then there is a vertex
xy € Ng,(zs), and H contains Sy 1 8(T1; T2; To; Y123T425T6T7TsTy), a contradiction again
(note that here, and in all the following cases, the branches of length 1 are at nonpendant
edges). The remaining cases are symmetric.

(i1) If 29 ¢ Ny, then there is a vertex z}, € Ng,(x2), and H contains the subgraph
S1.18(%4; T35 Y13 TsTeX7x8ToT1 2275 ), & contradiction. The remaining cases are symmetric.

(#7i) There are the following possibilities.

Neighbor of x; in R; Contradiction
ry € N, (24) S1,1,8(T6; T5; Y1; TVrTToT1 ToT3T4TY)
x5 € Np,(75) S1,18(T33 45 Y13 o1 TTT7T6T5T)
r5 € Npg,(73) S1,1,8(T6; 73 Y1 T5T4T3T2T1 ToT3TY)
In each of the cases, we have obtained a contradiction. O

Subcase 1.2.1: |Ry| > 2.

Let y1,y2 € Ro. If No(y1) D {x1, 23, x5}, then, by Claim 3 and by Claim 4(i), No(ys) C
{2, 24,26, 9}. Since |Ne(y2)| > 3, either zo, 29 € No(y2), or x2, 24 € Ne(y2) (in Hy),
but in the first case the cycle C' = x1y1 2304252627282 9Y2T221, and in the second case
the cycle C" = x12oys 243y T5x6 7892 is longer than C', a contradiction.

If No(y1) = {x1, 24,27}, then, by Claim 3 and by Claim 4(ii), No(y2) = 0, a contra-
diction.

If No(y1) = {z1, 23,26}, then, by Claim 3 and by Claim 4(iii), No(ye) C {x2, 27,29},
and the cycle C" = x1xoyawgxsrrr652423y1 21 is longer than C, a contradiction.
Subcase 1.2.2: |Ry| = 1.

Then the set V(C') U {y;} dominates all edges of H.
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Subcase 1.2.2.1: N¢(yy) D {z1, z3, 25}

Recall that, by Claim 4(i), {z1, x5, 27,28} C Ny. If xy27 ¢ E(H,), then the set
Ay = (V(C)U {yi}) \ {z1, 27} with |A;| = 8 dominates all edges of H and G =
L(H) is Hamilton-connected by Theorem 9, a contradiction. Hence x 27 € E(Hy).
Similarly, considering the set Ay = (V(C)U{y1})\{z1, x5} with |As| = 8, Theorem 9
implies z123 € E(Hp). Then the edges z127, x1xs, 728, T3x9 and x1x9 determine
a diamond in Hy. If some of the edges xix7, r1xg is subdivided in H, say, zix7
with a vertex xy7 € Vo(H), then H contains Sy 18(21;y1; T17; Tol3TaTsTeT7o8T9), &
contradiction. Hence zz; € E(H), and, similarly, z1z3 € E(H). If some of the
edges x7xs, TTo, T1Tg is subdivided in H, say, zgzg with a vertex xgg € Vo(H), then
H contains Sy 1 8(%1; y1; To; ToX3T4T526T72T3%s9). Hence xgrg € E(H), and, similarly,
7wy € E(H) and x129 € E(H). But then the edges z127, x1xs, x708, T3T9 and z129
determine a diamond also in H, a contradiction.

Subcase 1.2.2.2: No(y1) = {1, x4, x7}.

Recall that, by Claim 4(i7), {z2, 25} C N;. By Theorem 9 for the set A = V(C) U
{1} \ {za, 25} with |A| = 8, we have xox; € F(H,), but then the cycle ¢! =
T1Y1T4T3ToT5T6L7TeTgx 1S longer than C') a contradiction.

Subcase 1.2.2.3: No(y1) = {1, 23, z6}.

Recall that, by Claim 4(iii), {x4, 25} C N;. Theorem 9 for the set A = V(C) U
{y1} \ {x4, 3} with |A| = 8 then implies z423 € E(Hy). We observe that, moreover,
x4 € N, since if x1y; € E(Hy), then the cycle C" = zy 2023y x425060723T927 1S longer
than C', a contradiction.

Then, if Ny,(v1) = N (y1), the set A = V(C) \ {x4} dominates all edges of H and
G = L(H) is Hamilton-connected by Theorem 9; hence y; is adjacent to some vertex
y2 € R\ Ry. If 25 € N, then the cycle C" = 21y 2304756070891 dominates more
edges than C, contradicting the choice of C. Hence there is a vertex x}, € Ng(z2).
But then H contains S 18(T6; T5; T7; Y101 T9sT4T32225 ), a contradiction.

Case 2: c¢(Hy) = |V (Hy)| = 10.
Since §(Hy) > 3, every vertex of C' is in a chord.

Subcase 2.1: C has a 1-chord.

Let zy23 € E(Hy). We observe that no edge of C' except possibly zyzs and zexs is
subdivided in H, for if e.g. x3x4 is subdivided with a vertex x34 € V5(H), then H contains
S11.8(%s; 15 T X34T4TsTeT7T8T9T 1), & contradiction. If there is an 2}, € Ng(x1p), then
H contains S 1s(%3; T1; Ta; T4Z526T728T9T10T ), and if there is an zf; € Ng(xg), then
H contains Sy g(71; T10; T2; T3XaT5TeX7T3T9xy), a contradiction. Hence {wg,z10} C N,
and, symmetrically, {x5, 26} C N. Considering the set A = V(C)\ {ws, z9} with |A| =8,
Theorem 9 implies xgxg € E(H). Similarly, by Theorem 9, for the set A = V(C)\{ws, x10}
we have zgz19 € F(H), and for the set A = V(C)\ {x5, 210} we have 5219 € E(H) (recall
that none of these chords of C' is subdivided in H by Claim 2). But then x5, x4, 9 and
x10 are vertices of a diamond in H, a contradiction.

Subcase 2.2: C has a 3-chord.
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Let xyw5 € E(Hp). Since 6(Hy) > 3 and Ry = ), 3 must be in a chord.

Subcase 2.2.1: z3 is in a 2-chord.

By symmetry, let z3xg € E(Hp). Then {x5,27} C N, since if 2 € Ng(x5), then
H contains Sy 8(x3; Te; T4; TerTsTor1001052% ), and if 27 € Ng(x7), then H contains
S11.8(ws; s x4y XT5T 1T 10T 98 T7xy). I w57 ¢ E(H), then the set A =V (C)\ {x5, 27}
dominates all edges of H and G = L(H) is Hamilton-connected by Theorem 9, a
contradiction. Hence zsz; € E(H), and we are back in Subcase 2.1 (recall that,
throughout the proof, we implicitly use Claim 2, i.e., the fact that for |i — j| > 1,
T S E(H) if and Ol’lly if Tyl € E(H()))

Subcase 2.2.2: x3 is in a 3-chord.

Let z3z; € E(Hp). Then, similarly as above, we have z¢ € N (otherwise H con-
tains S7118(x3; To; Ta; T7xsTeT10T1252625) ), and also g € N (otherwise H contains
S11.8(ws; s 43 xrweT501T10T9T82g)). Theorem 9 for A =V (C) \ {ws, 25} then implies
xers € E(Hp), and we are back in Subcase 2.1.

Subcase 2.2.3: x5 is in a 4-chord.

Then z3xs € E(Hy), and considering Sy 18(x3; T2; T4; TsToT10T1T5262727,) for an af €
Ng(z7) and Sy 8(xs; Te; T4; Ts7TeX511T10T92y) for an xy € Np(zy), we have {x7, 29} C
N. Theorem 9 for A =V (C)\ {x7, 9} then implies x;x9 € F(Hy), and we are back in
Subcase 2.1.

Subcase 2.3: (' has only 4-chords.

If some edge of C' is subdivided in H, say, ] € Vo(H) with Ny (z}) = {x1, 22}, then
H contains Sy 18(x1;2); T10; TeTsT42302272879), a contradiction. If some vertex of C
is incident to a pendant edge, say, =12} € E(H) with 2} € Vi(H), then H contains
S11.8(21; 275 X105 Tax34T5Te7T3T9). By Proposition 7(i4i)(3), the vertex z; is in a trian-
gle, but it is impossible to create a triangle using only edges of C' and 4-chords. Thus,
V(C) = N, i.e.,, R = (. By the assumption of the subcase, say, ;x5 ¢ E(H), implying
that the set A = V/(C)\ {1, x3} with |A| = 8 dominates all edges of H. Thus, G = L(H)
is Hamilton-connected by Theorem 9, a contradiction.

Subcase 2.4: C' has only 2-chords and 4-chords, and at least one 2-chord.

Let T be a triangle in Hy. Then V(T') C V(C) = V(H,), implying that each edge of T'
is an edge of C', a 2-chord of C' or a 4-chord of C'. However, a 2-chord spans 3 edges of
C, and a 4-chord spans 5 edges of C, implying that the sum of distances of vertices of T'
along C' is odd, contradicting the fact that |V (C)| = 10. Thus, Hy is triangle-free, and
since a triangle in H is also a triangle in Hy by Lemma F, H is also triangle-free.

Now, if, say, z; is incident to a pendant edge z,2) € E(H) with x; € Vi(H), then H
contains Sy 18(x1; ); T10; LaT3TaT5TeX7LsTy), hence x; is in a triangle, contradicting the
fact that H is triangle-free. By symmetry, there are no pendant edges in H.

By the assumption, C' has a 2-chord, let thus z124 € E(Hy). Since xsx7; ¢ E(Hy) by
Subcase 2.1, if x5, 27 € N, then G = L(H) is Hamilton-connected by Theorem 9 for the
set A =V/(C)\ {x5,27}, a contradiction. Hence at most one of the vertices x5, z7 is in
N, i.e., at least one of the edges z4x5, x516, TeT7, T728 is subdivided in H. Applying
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the same argument to the 1-chords xgxg, x719 and xgxip, and to the 3-chords zsr9 and
Tex10, we conclude that among the edges x5x¢, xex7, T708 T3T9 and xgxqg, at least two of
them are subdivided in H. Then, if, say, z¢z; is subdivided with x5 € Vo(H) and zgxg
is subdivided with x§ € Vo(H), we have Sy 18(%4; 213 T3; T52625T72825T9210) (other cases
are analogous).

Case 3: c¢(Hy) > 10 and |V (Hy)| > ¢(Hyp).

Set ¢(Hy) =t. Then H contains Sy 18(21; y1; T; TaX3T4T5262723%9) (note that the edge z1y;
is nonpendant since y; € Ry).

Case 4: ¢(Hy) = |V (Hy)| = 11.
Since 6(Hy) > 3, every vertex of C'is in a chord.

Subcase 4.1: C' has a 1-chord.

Let x5 € E(Hp). Then H contains Sy 1(23; T1; T2; T4T5262728T9T10%11), & contradic-
tion.

Subcase 4.2: C has a 3-chord.

Let 25 € E(Hp). Since 6(Hy) > 3, x3 is in a chord.

By symmetry, there are the following possibilities.

Chord containing x3 Contradiction
2-chord 3w 51,1,8(953; Tg; Ty, $6$55L’1$11$10$95L’8$7)
3-chord w37 51,1,8(963; To; Ty; 56737655537156115610%9378)
4-chord w33 51,1,8(173; T2; Ty $8$7$6$5$1$11l‘10$9)

Subcase 4.3: C has a 2-chord.

Let z1x4 € E(Hp). By the previous subcases, C' has only 2-chords and 4-chords. We
consider the possible chords containing xs.

Subcase 4.3.1: x5 is in the 2-chord zsx1g.
We show that {z4,z¢, 25} C N.

Neighbor of x; in R Contradiction
vy € Ng(z4) S1,8(2; 713 T35 T10T9TT7T6 54T
JC% € NR(%) 51,1,8($4§ T3;Ts; $1I11$10$9$8$7$6%)
r5 € Np(xs) 51,1,s($10; Tg; L11; ToT3LsT5TeL7TITY)

Thus, {x4, 26, vs} C N. By the previous subcases, {x4, zs, xs} is an independent set.
Then the set A = V(C) \ {24, 76,23} with |A] = 8 dominates all edges of H and
G = L(H) is Hamilton-connected by Theorem 9, a contradiction.

Subcase 4.3.2: x5 is in the 2-chord xoxs.

Since 6(Hy) > 3, x3 is in a chord. If z3 is in a 2-chord, we are in a situation symmetric
to Subcase 4.3.1, which implies a contradiction. Thus, by Subcases 4.1 and 4.2, x3 is
in a 4-chord, and, by symmetry, we can suppose that zzxs € E(Hy) (recall that we
already have x4, 2925 € E(Hp), hence the second case x3xg € E(Hy) is symmetric).
We show that {z1, 23,210} C N.

20



Neighbor of z; in R Contradiction
x) € Ng(z1) S1.1,8(25; 43 Te; ToT3T8TT10T11017])
zh € Ng(x3) 51,1,8($5; Ty; Le; LoT1211T10L9T3L3TY)
$/10 € NR(%O) 51,1,8@1; T11;5 T2, $4I5$6$7$8$9$10$/10)

Thus, {x1,23,210} C N. Since the set {x4,z6, 25} is independent by the previous
subcases, the set A = V(C) \ {21, 3,210} with |A| = 8 dominates all edges of H and
G = L(H) is Hamilton-connected by Theorem 9, a contradiction.

Subcase 4.3.3: - is in the 4-chord xox7.

Then {z3,211} C N, since if there is a vertex x4 € Ng(z3), then H contains the
subgraph S 1 8(27; T6; 2; TsToX10T11T1 242325 ), and if there is an 2}, € Ng(x11), then
H contains Sy 1 8(%4; T1; T3; T5T6T7T8T9T10T11 L] )-

We consider the set A = V(C)\{x3, z¢, x11 }. We have x3x¢ ¢ E(Hy) and z321; ¢ E(Hy)
by the previous subcases. If A is independent, then G = L(H) is Hamilton-connected
by Theorem 9, a contradiction. Hence necessarily xgx1; € E(Hp), and then H contains
S1,1,8(2; T1; T35 TrTT9T 10T 11 T6T5T4).-

Subcase 4.3.4: x5 is in the 4-chord zsxs.

Since this is the only remaining subcase, by symmetry, x3 is in the 4-chord x3xg. Then
H contains 51,1,8 (I‘g, To; I3, $9I10$11$1I4I5$6I7).

Subcase 4.4: C' has only 4-chords.

By parity, some vertex of C'is in two 4-chords. Choose the notation such that x,xg, 127 €
E(Hy). The possible 4-chords containing x5 are zoz7 and zoxg. However, if xox7; € E(Hy),
then the edges x1x9, xgx7, T126, T127 and xox7 determine a diamond in Hy. If; say, z1x, is
subdivided in H with a vertex ], then H contains Sj 1 g(%a; '); X7; T3T4T52621211T10T9 ).
Hence z1z9 € E(H), and, symmetrically, xzgx; € E(H). Since also xyx¢, 127, Tox7 €
E(H) by Claim 2, the chord zoz7 implies a diamond in H, a contradiction. Thus, zozg €
E(Hp). Then the possible 4-chords containing xo are x4z and x50, however, if z4210 €
E(Hy), then H contains S 18(210; To; T11; TaZ526T12728T223), and if x5z19 € E(Hp), then
H contains 51’1’8<I10; To; T11, I5$6I1$7I’8l’2$3$4).

Case 5: c¢(Hy) = |V (Hy)| = 12.

Since d(Hy) > 3, every vertex of C is in a chord. If zy23 € E(Hp), then H contains
the subgraph S 1s(23; T1; T2; T4T52x62728T9T10711), and if 124 € E(Hy), then H contains
S11,8(Ta; 215 235 XpTeX7LToT10T11T12). By symmetry, C' has no 1-chords and no 2-chords.

Subcase 5.1: C has a 3-chord.

Let x1x5 € E(Hy). We consider possible chords containing x3. By symmetry, there are
the following possibilities.

Chord containing x3 Contradiction
3-chord w37 S1,1,8(23; T2; T4} T7T6T5T1T12T11T1029)
4-chord x3rg 51,1,8(333; To; Ty 958377$69653713312£C11$10)
5-chord z379 51,1,8($3; T2; Ty $9$8$7$6I5$1$12I11)
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Subcase 5.2: C has a 4-chord.

Let zy2¢ € E(Hp).Then, for a chord containing x3, we have the following possibilities.

Chord containing x3 Contradiction
4-chord x3rg 51,1,8(333; T2; Ty; $8$9$10$11$12$1I6$€7)
5-chord w3z 51,1,8(1‘3; Ta; Ty, $9$10$11$12$1I6$7$8)
4-chord z371 51,1,8($3; Tg; T4, $10$11$12$1$6$7$89€9)

Subcase 5.3: C' has only 5-chords.

Then H contains 51’178(1'1; T9;T12; .T7$61L'5(L’4ZE3I9$10.T11).

Case 6: c¢(Hy) = |V (Hy)| = 13.
Since 6(Hy) > 3, every vertex of C is in a chord.

Subcase 6.1: C' has a k-chord for some k, 1 < k < 3.

By symmetry, we can suppose that xjx;,0 € E(Hp), 1 < k < 3. Then H contains the
subgraph S 1 8(21; T2; 213} Thy2Trts - - - Thio)-

Subcase 6.2: C' has a 4-chord.

Let x12¢ € E(Hy). By the previous subcases and by symmetry, possible chords contain-
ing 19 are x1px2 or Tigxs, and then H contains S 5(e; T5; T7; T1213T12011X10T22324) if
T10T2 € E(Hp), or S118(23; T2; 45 T10T11T1221301 TeT70s) if x1023 € E(Hp).

Subcase 6.3: C' has only 5-chords.

Let zy27; € E(Hp). By symmetry, we have z4x;9 € E(Hp), and then H contains
51,1,8(1'4;353;5175;$10x11$12$139€1$7$8$9)-

Case 7: c¢(Hy) = |V(Hy)| = 14.
Since d(Hy) > 3, every vertex of C'is in a chord.

Subcase 7.1: C' has a k-chord for some k, 1 < k < 4.

By symmetry, we can suppose that xixp0 € F(Hy), 1 < k < 4. Then H contains the
subgraph 51,1,8(551; T2, X145 Lp42Tf43 - - -$k+9)-

Subcase 7.2: C' has a 5-chord.

Let zy27; € E(Hy). The vertex x4 is in a chord and, by the previous subcases and by
symmetry, z4r19 € E(Hg) or z4x1; € E(Hp). However, in the first case H contains
the subgraph S 1 g(z4; T3; T5; T10011T12T13714212725), and in the second case H contains
51,1,8(1'4;963;il?s;$11I12$13$149€1$7$89€9)-

Subcase 7.3: C' has only 6-chords.

Then H contains Sj 1 8(%1; To; T14; TsT7T6L5T4T3T10211)-

Case 8: c¢(Hy) = |V (Hy)| = 15.
Since 0(Hy) > 3, every vertex of C' is in a chord.
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Subcase 8.1: C has a k-chord for some k, 1 < k < 5.

By symmetry, we can suppose that xjz,,0 € E(Hp), 1 < k < 5. Then H contains the
subgraph Sy 1 (15 T2; T15; Thy2Tri3 - - - Trio)-

Subcase 8.2: C' has only 6-chords.

Let 2123 € E(Hp). Up to a symmetry, the only possibility for a 6-chord containing x5 is
x5T12, and then H contains S 18(%1; Ts; T15; Toal3TaT5T12T11L10T9).

Case 9: ¢(Hy) = |V (Hy)| = 16.

Subcase 9.1: C has a k-chord for some k, 1 < k < 6.

By symmetry, we can suppose that xjz,,0 € E(Hp), 1 < k < 6. Then H contains the
subgraph Sy 18(71; T2; T16; Thy2Tri3 - - - Thio)-

Subcase 9.2: C' has only 7-chords.

Then H contains Si 1 8(%1; Ta; T16; ToTsTrTeT5L4T3T11 ).

Case 10: ¢(Hy) = |V (Hy)| > 17.

Set ¢(Hp) = t. By symmetry, we can choose the notation such that zyz; € E(H,) for some

i,3<i<|t]+1, and then H contains Sy 1 g(@1; @2; T4 T4; Tym 10— 9% 3T 44Ty 5Ty 6T4—7).-
|

5 Concluding remarks

1. Throughout the proof of Theorem 1, whenever we reached a contradiction by finding in H
a subgraph F' ~ S g, we always (often implicitly) used the fact that F' does not satisfy the
conditions of Proposition 7, or, equivalently, that G = L(H) fails to satisfy the conditions of
the class Z;. This means that we have in fact proved the following slightly stronger result.

Theorem 11. Let G be a 3-connected claw-free graph such that G % L(W1') and every
induced subgraph F' ~ Z; in G satisfies the following conditions:

(1) [Va(TF) N Vsr(G)| = 1,

(17) there is a vertex xp € VgL (G) such that V(Tr) C Ng(zp) and (V(F)>G;F * Zz.
Then G is Hamilton-connected.

2. Similarly as the main results of [14], [15] and [21], Theorem 1 admits another slight
extension. For s > 0, a graph G is s-Hamilton-connected if the graph G — M is Hamilton-
connected for any set M C V(G) with |[M| < s. Obviously, an s-Hamilton-connected graph
must be (s + 3)-connected. Since an induced subgraph of a {K 3, Z7}-free graph is also
{K13, Z7}-free, we immediately have the following fact, which extends Corollary 2 and shows
that, in {K; 3, Z7}-free graphs, the obvious necessary condition is also sufficient.

Corollary 12. Let s > 0 be an integer, and let G be a {K, 3, Z;}-free graph of order
n > s+ 21. Then G is s-Hamilton-connected if and only if G is (s + 3)-connected.
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Note that it would be possible to replace the condition n > s + 21 with an assumption
involving the exceptional graph; however, the resulting conditions would be, in our opinion,
too technical and therefore not interesting. We leave details to the reader.

3. We can now update the discussion of potential pairs X,Y of connected graphs that
might imply Hamilton-connectedness of a 3-connected { X, Y }-free graph, summarized in [15]
and [21].

As shown in [7], up to a symmetry, necessarily X = K 3, and, summarizing the discussions
from [4], [7], [9] and [15], there are the following possibilities for Y (see Fig. 1 for the graphs
Zi, B j, N;jr and I';):

(1) Y e{l'|,T3}, or Y =T forn = |V(G)| > 21,

(i) Y = P, with 4 < i <0,
(i1i) Y = Z; with i <6, or Y = Z; forn = |V(G)| > 21,
(iv) Y =B, ; withi+j <7,

Best known results in the direction of each of these subgraphs are summarized in Theo-
rem A, and we summarize the current status of the problem in the following table.

The graph Y Possible Best known | Reference Open
I 'y, I's, I's for n > 21 I 7] I's; I's for n > 21
P, 4<i<9 Py [4] —
Z; 1 <7 Zr This paper —
B, ; 1+ <7 1+J <7 [21] —
Nij i+j+k<T i+j+k<T7][14, 15, 16] —

Thus, the only remaining open cases are the pairs { K3 3, '3} (for all graphs), and {K; 3,15}
for n > 21 (or, possibly, for G % L(W1)).
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